Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Review <math style="vertical-align: 0px">u</math>-substitution
+
|How would you integrate <math>\int (2x+1)\sqrt{x^2+x}~dx</math>?
 +
|-
 +
|
 +
::You could use <math>u</math>-substitution. Let <math>u=x^2+x</math>. Then, <math>du=(2x+1)dx</math>.
 +
|-
 +
|
 +
::Thus, <math>\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C</math>.
 
|}
 
|}
  

Revision as of 15:13, 28 March 2016

Evaluate

a)
b)


Foundations:  
How would you integrate ?
You could use -substitution. Let . Then, .
Thus, .

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
   .
Step 2:  
We integrate to get
   .
We now evaluate to get
   .

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes  .
Step 2:  
We now have:
   .
So, we have
   .
Final Answer:  
(a)  
(b)  

Return to Sample Exam