Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| Review <math style="vertical-align: 0px">u</math>-substitution, and
+
|Recall the trig identity: <math>\sin^2x+\cos^2x=1</math>.
 
|-
 
|-
|Trig identities.
+
|How would you integrate <math>\int \sin^2x\cos x~dx</math>?
 +
|-
 +
|
 +
::You could use <math>u</math>-substitution. Let <math>u=\sin x</math>. Then, <math>du=\cos xdx</math>.
 +
|-
 +
|
 +
::Thus, <math>\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C</math>.
 
|}
 
|}
  

Revision as of 11:03, 28 March 2016

Evaluate the integral:


Foundations:  
Recall the trig identity: .
How would you integrate ?
You could use -substitution. Let . Then, .
Thus, .

Solution:

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we use -substitution. Let . Then, . Therefore,
   .
Final Answer:  
  

Return to Sample Exam