Difference between revisions of "009A Sample Final 1, Problem 5"
Jump to navigation
Jump to search
Line 36: | Line 36: | ||
|So, we have  <math style="vertical-align: -5px">2(40)6=2(50)s'.</math> | |So, we have  <math style="vertical-align: -5px">2(40)6=2(50)s'.</math> | ||
|- | |- | ||
− | |Solving for  <math style="vertical-align: -5px">s',</math> we get  <math style="vertical-align: -14px">s'=\frac{24}{5}</math> m/s. | + | |Solving for  <math style="vertical-align: -5px">s',</math> we get  <math style="vertical-align: -14px">s'=\frac{24}{5}</math>  m/s. |
|} | |} | ||
Line 43: | Line 43: | ||
|- | |- | ||
| | | | ||
− | :<math>s'=\frac{24}{5}</math> m/s | + | :<math style="vertical-align: -14px">s'=\frac{24}{5}</math>  m/s |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 21:31, 4 March 2016
A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing
when 50 (meters) of the string has been let out?
Foundations: |
---|
Recall: |
The Pythagorean Theorem: For a right triangle with side lengths , where is the length of the |
|
Solution:
Step 1: |
---|
Insert diagram. |
From the diagram, we have by the Pythagorean Theorem. |
Taking derivatives, we get |
|
Step 2: |
---|
If then |
So, we have |
Solving for we get m/s. |
Final Answer: |
---|
|