Difference between revisions of "009A Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>.
 
<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>.
  
== 1 ==
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
Line 28: Line 27:
 
'''Solution:'''
 
'''Solution:'''
  
== 2 ==
 
 
'''(a)'''
 
'''(a)'''
  
Line 57: Line 55:
 
|}
 
|}
  
== 3 ==
 
 
'''(b)'''
 
'''(b)'''
  
Line 71: Line 68:
 
|So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math>
 
|So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math>
 
|}
 
|}
== 4 ==
+
 
 
'''(c)'''
 
'''(c)'''
  
Line 100: Line 97:
 
|}
 
|}
  
== 5 ==
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(d) &nbsp;  
 
!(d) &nbsp;  
Line 110: Line 106:
 
|So, the inflection point is &thinsp;<math style="vertical-align: -5px">(2,-11).</math>
 
|So, the inflection point is &thinsp;<math style="vertical-align: -5px">(2,-11).</math>
 
|}
 
|}
 
== 6 ==
 
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 120: Line 113:
 
|}
 
|}
  
== 7 ==
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 14:08, 4 March 2016

Given the function ,

a) Find the intervals in which the function increases or decreases.

b) Find the local maximum and local minimum values.

c) Find the intervals in which the function concaves upward or concaves downward.

d) Find the inflection point(s).

e) Use the above information (a) to (d) to sketch the graph of .

Foundations:  
Recall:
1.   is increasing when   and   is decreasing when
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when   and   is concave down when
4. Inflection points occur when

Solution:

(a)

Step 1:  
We start by taking the derivative of   We have
Now, we set   So, we have  
Hence, we have   and
So, these values of break up the number line into 3 intervals:  
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For
For
For
Thus,   is increasing on   and decreasing on

(b)

Step 1:  
By the First Derivative Test, the local maximum occurs at and the local minimum occurs at
Step 2:  
So, the local maximum value is and the local minimum value is

(c)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find
We have
We set
So, we have Hence,
This value breaks up the number line into two intervals:
Step 2:  
Again, we use test points in these two intervals.
For   we have
For   we have
Thus,   is concave up on the interval and concave down on the interval
(d)  
Using the information from part (c), there is one inflection point that occurs at
Now, we have
So, the inflection point is  
(e)  
Insert sketch here.
Final Answer:  
(a)   is increasing on and decreasing on
(b) The local maximum value is   and the local minimum value is
(c)   is concave up on the interval and concave down on the interval
(d)
(e) See graph in (e).

Return to Sample Exam