Difference between revisions of "009A Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
<span class="exam">b) Use differentials to find an approximate value for <math style="vertical-align: -2px">1.9^3</math>.
 
<span class="exam">b) Use differentials to find an approximate value for <math style="vertical-align: -2px">1.9^3</math>.
 
+
== 1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
Line 17: Line 17:
  
 
'''Solution:'''
 
'''Solution:'''
 
+
== 2 ==
 
'''(a)'''
 
'''(a)'''
  
Line 41: Line 41:
 
::<math>dy=3(2)^2dx=12dx.</math>
 
::<math>dy=3(2)^2dx=12dx.</math>
 
|}
 
|}
 
+
== 3 ==
 
'''(b)'''
 
'''(b)'''
  
Line 69: Line 69:
 
::<math>1.9^3\approx 2^3+-1.2=6.8.</math>
 
::<math>1.9^3\approx 2^3+-1.2=6.8.</math>
 
|}
 
|}
 
+
== 4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 13:33, 4 March 2016

Let

a) Find the differential of at .

b) Use differentials to find an approximate value for .

1

Foundations:  
What is the differential of at
Since the differential is

Solution:

2

(a)

Step 1:  
First, we find the differential
Since we have
Step 2:  
Now, we plug in into the differential from Step 1.
So, we get

3

(b)

Step 1:  
First, we find . We have
Then, we plug this into the differential from part (a).
So, we have
Step 2:  
Now, we add the value for to to get an
approximate value of
Hence, we have

4

Final Answer:  
(a)
(b)

Return to Sample Exam