Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 62: Line 62:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exists <math style="vertical-align: -5px">a,b</math> such that <math style="vertical-align: -5px">f(a)=f(b)=0.</math>
+
|Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exist <math style="vertical-align: -4px">a,b</math> such that &thinsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
 
|-
 
|-
|Then, by the Mean Value Theorem, there exists <math style="vertical-align: -1px">c</math> with <math style="vertical-align: -1px">a<c<b</math> such that <math style="vertical-align: -5px">f'(c)=0.</math>
+
|Then, by the Mean Value Theorem, there exists <math style="vertical-align: 0px">c</math> with &thinsp;<math style="vertical-align: 0px">a<c<b</math> such that &thinsp;<math style="vertical-align: -5px">f'(c)=0.</math>
 
|}
 
|}
  
Line 70: Line 70:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math> Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
+
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>&thinsp; Since &thinsp;<math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
 
|-
 
|-
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math> So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
+
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>&thinsp; So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
 
|-
 
|-
|which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math> has at most one zero.
+
|which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math>&thinsp; has at most one zero.
 
|}
 
|}
 +
 
== 3 ==
 
== 3 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 12:15, 4 March 2016

Consider the following function:

a) Use the Intermediate Value Theorem to show that   has at least one zero.

b) Use the Mean Value Theorem to show that   has at most one zero.

Foundations:  
Recall:
1. Intermediate Value Theorem: If   is continuous on a closed interval and is any number
between   and , then there is at least one number in the closed interval such that
2. Mean Value Theorem: Suppose   is a function that satisfies the following:
  is continuous on the closed interval  
  is differentiable on the open interval
Then, there is a number such that    and

Solution:

1

(a)

Step 1:  
First note that 
Also, 
Since 
Thus,    and hence  
Step 2:  
Since   and    there exists with    such that
  by the Intermediate Value Theorem. Hence,   has at least one zero.

2

(b)

Step 1:  
Suppose that has more than one zero. So, there exist such that  
Then, by the Mean Value Theorem, there exists with   such that  
Step 2:  
We have   Since  
  So,
which contradicts Thus,   has at most one zero.

3

Final Answer:  
(a) Since   and    there exists with    such that
  by the Intermediate Value Theorem. Hence,   has at least one zero.
(b) See Step 1 and Step 2 above.

Return to Sample Exam