Difference between revisions of "009A Sample Final 1, Problem 6"
Jump to navigation
Jump to search
(→1) |
(→3) |
||
Line 80: | Line 80: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0,</math> there exists <math style="vertical-align: | + | |'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math>  and  <math style="vertical-align: -5px">f(0)>0,</math>  there exists <math style="vertical-align: 0px">x</math> with  <math style="vertical-align: 0px">-5<x<0</math>  such that |
|- | |- | ||
− | |<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero. | + | |<math style="vertical-align: -5px">f(x)=0</math>  by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math>  has at least one zero. |
|- | |- | ||
|'''(b)''' See '''Step 1''' and '''Step 2''' above. | |'''(b)''' See '''Step 1''' and '''Step 2''' above. | ||
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:12, 4 March 2016
Consider the following function:
a) Use the Intermediate Value Theorem to show that has at least one zero.
b) Use the Mean Value Theorem to show that has at most one zero.
Foundations: |
---|
Recall: |
1. Intermediate Value Theorem: If is continuous on a closed interval and is any number |
|
2. Mean Value Theorem: Suppose is a function that satisfies the following: |
|
|
|
Solution:
1
(a)
Step 1: |
---|
First note that |
Also, |
Since |
|
Thus, and hence |
Step 2: |
---|
Since and there exists with such that |
by the Intermediate Value Theorem. Hence, has at least one zero. |
2
(b)
Step 1: |
---|
Suppose that has more than one zero. So, there exists such that |
Then, by the Mean Value Theorem, there exists with such that |
Step 2: |
---|
We have Since |
So, |
which contradicts Thus, has at most one zero. |
3
Final Answer: |
---|
(a) Since and there exists with such that |
by the Intermediate Value Theorem. Hence, has at least one zero. |
(b) See Step 1 and Step 2 above. |