Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First note that <math style="vertical-align: -3px">f(0)=7.</math>
+
|First note that&thinsp; <math style="vertical-align: -5px">f(0)=7.</math>
 
|-
 
|-
|Also, <math style="vertical-align: -3px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math>
+
|Also,&thinsp; <math style="vertical-align: -5px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math>
 
|-
 
|-
|Since <math style="vertical-align: -3px">-1\leq \sin(x) \leq 1,</math>
+
|Since&thinsp; <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math>
 
|-
 
|-
 
|
 
|
 
::<math>-2\leq -2\sin(x) \leq 2.</math>
 
::<math>-2\leq -2\sin(x) \leq 2.</math>
 
|-
 
|-
|Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0.</math>
+
|Thus,&thinsp; <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math>&thinsp; and hence &thinsp;<math style="vertical-align: -5px">f(-5)<0.</math>
 
|}
 
|}
  
Line 51: Line 51:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0,</math> there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that  
+
|Since <math style="vertical-align: -5px">f(-5)<0</math>&thinsp; and &thinsp;<math style="vertical-align: -5px">f(0)>0,</math>&thinsp; there exists <math style="vertical-align: 0px">x</math> with &thinsp;<math style="vertical-align: 0px">-5<x<0</math>&thinsp; such that  
 
|-
 
|-
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
+
|<math style="vertical-align: -5px">f(x)=0</math>&thinsp; by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math>&thinsp; has at least one zero.
 
|}
 
|}
 +
 
== 2 ==
 
== 2 ==
 
'''(b)'''
 
'''(b)'''

Revision as of 12:11, 4 March 2016

Consider the following function:

a) Use the Intermediate Value Theorem to show that   has at least one zero.

b) Use the Mean Value Theorem to show that   has at most one zero.

Foundations:  
Recall:
1. Intermediate Value Theorem: If   is continuous on a closed interval and is any number
between   and , then there is at least one number in the closed interval such that
2. Mean Value Theorem: Suppose   is a function that satisfies the following:
  is continuous on the closed interval  
  is differentiable on the open interval
Then, there is a number such that    and

Solution:

1

(a)

Step 1:  
First note that 
Also, 
Since 
Thus,    and hence  
Step 2:  
Since   and    there exists with    such that
  by the Intermediate Value Theorem. Hence,   has at least one zero.

2

(b)

Step 1:  
Suppose that has more than one zero. So, there exists such that
Then, by the Mean Value Theorem, there exists with such that
Step 2:  
We have Since
So,
which contradicts Thus, has at most one zero.

3

Final Answer:  
(a) Since and there exists with such that
by the Intermediate Value Theorem. Hence, has at least one zero.
(b) See Step 1 and Step 2 above.

Return to Sample Exam