Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::::::<math>f(x)=3x-2\sin x+7</math>
 
::::::<math>f(x)=3x-2\sin x+7</math>
  
<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -3px">f(x)</math> has at least one zero.
+
<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>&thinsp; has at least one zero.
  
<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -3px">f(x)</math> has at most one zero.
+
<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>&thinsp; has at most one zero.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 12: Line 12:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1. Intermediate Value Theorem''' If <math style="vertical-align: -5px">f(x)</math> is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: -1px">c</math> is any number
+
|'''1. Intermediate Value Theorem:''' If <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number
 
|-
 
|-
 
|
 
|
::between <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: -1px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math>
+
::between <math style="vertical-align: -5px">f(a)</math>&thinsp; and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math>
 
|-
 
|-
|'''2. Mean Value Theorem''' Suppose <math style="vertical-align: -5px">f(x)</math> is a function that satisfies the following:
+
|'''2. Mean Value Theorem:''' Suppose <math style="vertical-align: -5px">f(x)</math>&thinsp; is a function that satisfies the following:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -5px">f(x)</math> is continuous on the closed interval <math style="vertical-align: -5px">[a,b].</math>
+
::<math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous on the closed interval &thinsp;<math style="vertical-align: -5px">[a,b].</math>
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -5px">f(x)</math> is differentiable on the open interval <math style="vertical-align: -5px">(a,b).</math>
+
::<math style="vertical-align: -5px">f(x)</math>&thinsp; is differentiable on the open interval <math style="vertical-align: -5px">(a,b).</math>
 
|-
 
|-
 
|
 
|
::Then, there is a number <math style="vertical-align: -1px">c</math> such that <math style="vertical-align: -1px">a<c<b</math> and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math>
+
::Then, there is a number <math style="vertical-align: 0px">c</math> such that &thinsp;<math style="vertical-align: 0px">a<c<b</math>&thinsp; and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math>
 
|}
 
|}
  

Revision as of 11:54, 4 March 2016

Consider the following function:

a) Use the Intermediate Value Theorem to show that   has at least one zero.

b) Use the Mean Value Theorem to show that   has at most one zero.

Foundations:  
Recall:
1. Intermediate Value Theorem: If   is continuous on a closed interval and is any number
between   and , then there is at least one number in the closed interval such that
2. Mean Value Theorem: Suppose   is a function that satisfies the following:
  is continuous on the closed interval  
  is differentiable on the open interval
Then, there is a number such that    and

Solution:

(a)

Step 1:  
First note that
Also,
Since
Thus, and hence
Step 2:  
Since and there exists with such that
by the Intermediate Value Theorem. Hence, has at least one zero.

(b)

Step 1:  
Suppose that has more than one zero. So, there exists such that
Then, by the Mean Value Theorem, there exists with such that
Step 2:  
We have Since
So,
which contradicts Thus, has at most one zero.
Final Answer:  
(a) Since and there exists with such that
by the Intermediate Value Theorem. Hence, has at least one zero.
(b) See Step 1 and Step 2 above.

Return to Sample Exam