Difference between revisions of "009A Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''The Pythagorean Theorem''' For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math>, where <math style="vertical-align: 0px">c</math> is the length of the  
+
|'''The Pythagorean Theorem:''' For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math>, where <math style="vertical-align: 0px">c</math> is the length of the  
 
|-
 
|-
 
|
 
|
Line 21: Line 21:
 
|Insert diagram.
 
|Insert diagram.
 
|-
 
|-
|From the diagram, we have <math style="vertical-align: -2px">30^2+h^2=s^2</math> by the Pythagorean Theorem.
+
|From the diagram, we have <math style="vertical-align: -3px">30^2+h^2=s^2</math> by the Pythagorean Theorem.
 
|-
 
|-
 
|Taking derivatives, we get  
 
|Taking derivatives, we get  
Line 32: Line 32:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If <math style="vertical-align: -1px">s=50,</math> then <math style="vertical-align: -3px">h=\sqrt{50^2-30^2}=40.</math>
+
|If&thinsp; <math style="vertical-align: -4px">s=50,</math> then&thinsp; <math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
 
|-
 
|-
|So, we have <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
+
|So, we have&thinsp; <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
 
|-
 
|-
|Solving for <math style="vertical-align: 0px">s',</math> we get <math style="vertical-align: -14px">s'=\frac{24}{5}</math> m/s.
+
|Solving for&thinsp; <math style="vertical-align: -5px">s',</math> we get&thinsp; <math style="vertical-align: -14px">s'=\frac{24}{5}</math> m/s.
 
|}
 
|}
  
Line 42: Line 42:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
| <math>s'=\frac{24}{5}</math> m/s
+
|
 +
:<math>s'=\frac{24}{5}</math> m/s
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:49, 4 March 2016

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing

when 50 (meters) of the string has been let out?

Foundations:  
Recall:
The Pythagorean Theorem: For a right triangle with side lengths , where is the length of the
hypotenuse, we have

Solution:

Step 1:  
Insert diagram.
From the diagram, we have by the Pythagorean Theorem.
Taking derivatives, we get
Step 2:  
If  then 
So, we have 
Solving for  we get  m/s.
Final Answer:  
m/s

Return to Sample Exam