Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we compute <math>\frac{dy}{dx}.</math> We get
+
|First, we compute&thinsp; <math style="vertical-align: -13px">\frac{dy}{dx}.</math> We get
 
|-
 
|-
 
|
 
|
::<math>\frac{dy}{dx}=2x-\sin(\pi(x^2+1))(2\pi x).</math>
+
::<math>\frac{dy}{dx}\,=\,2x-\sin(\pi(x^2+1))(2\pi x).</math>
 
|}
 
|}
  
Line 35: Line 35:
 
|To find the equation of the tangent line, we first find the slope of the line.  
 
|To find the equation of the tangent line, we first find the slope of the line.  
 
|-
 
|-
|Using <math style="vertical-align: -3px">x_0=1</math> in the formula for <math style="vertical-align: -12px">\frac{dy}{dx}</math> from Step 1, we get
+
|Using <math style="vertical-align: -3px">x_0=1</math>&thinsp; in the formula for &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&thinsp; from Step 1, we get
 
|-
 
|-
 
|
 
|
::<math>m=2(1)-\sin(2\pi)2\pi=2.</math>
+
::<math>m=2(1)-\sin(2\pi)2\pi\,=\,2.</math>
 
|-
 
|-
|To get a point on the line, we plug in <math style="vertical-align: -3px">x_0=1</math> into the equation given.  
+
|To get a point on the line, we plug in <math style="vertical-align: -3px">x_0=1</math>&thinsp; into the equation given.  
 
|-
 
|-
|So, we have <math style="vertical-align: -5px">y=1^2+\cos(2\pi)=2.</math>
+
|So, we have&thinsp; <math style="vertical-align: -5px">y=1^2+\cos(2\pi)=2.</math>
 
|-
 
|-
|Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2.</math>
+
|Thus, the equation of the tangent line is&thinsp; <math style="vertical-align: -5px">y=2(x-1)+2.</math>
 
|}
 
|}
 +
 
== 1 ==
 
== 1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 11:44, 4 March 2016

If

compute    and find the equation for the tangent line at . You may leave your answers in point-slope form.

Foundations:  
1. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
2. What does the Chain Rule state?
For functions   and  

Solution:

2

Step 1:  
First, we compute  We get
Step 2:  
To find the equation of the tangent line, we first find the slope of the line.
Using   in the formula for    from Step 1, we get
To get a point on the line, we plug in   into the equation given.
So, we have 
Thus, the equation of the tangent line is 

1

Final Answer:  
  
  

Return to Sample Exam