Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::::::<math>y=x^2+\cos (\pi(x^2+1))</math>
 
::::::<math>y=x^2+\cos (\pi(x^2+1))</math>
  
<span class="exam">compute <math style="vertical-align: -12px">\frac{dy}{dx}</math> and find the equation for the tangent line at <math style="vertical-align: -3px">x_0=1</math>. You may leave your answers in point-slope form.
+
<span class="exam">compute &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&thinsp; and find the equation for the tangent line at <math style="vertical-align: -3px">x_0=1</math>. You may leave your answers in point-slope form.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 16: Line 16:
 
|-
 
|-
 
|
 
|
::For functions <math style="vertical-align: -12px">f(x),g(x),~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x).</math>
+
::For functions <math style="vertical-align: -5px">f(x)</math>&thinsp; and <math style="vertical-align: -5px">g(x),</math>&nbsp; <math style="vertical-align: -12px">~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x).</math>
 
|}
 
|}
  
 
'''Solution:'''
 
'''Solution:'''
 
+
== 2 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
Line 46: Line 46:
 
|Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2.</math>
 
|Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2.</math>
 
|}
 
|}
 
+
== 1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 11:40, 4 March 2016

If

compute    and find the equation for the tangent line at . You may leave your answers in point-slope form.

Foundations:  
1. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
2. What does the Chain Rule state?
For functions   and  

Solution:

2

Step 1:  
First, we compute We get
Step 2:  
To find the equation of the tangent line, we first find the slope of the line.
Using in the formula for from Step 1, we get
To get a point on the line, we plug in into the equation given.
So, we have
Thus, the equation of the tangent line is

1

Final Answer:  

Return to Sample Exam