Difference between revisions of "009A Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 3: | Line 3: | ||
::::::<math>y=x^2+\cos (\pi(x^2+1))</math> | ::::::<math>y=x^2+\cos (\pi(x^2+1))</math> | ||
− | <span class="exam">compute <math style="vertical-align: -12px">\frac{dy}{dx}</math> and find the equation for the tangent line at <math style="vertical-align: -3px">x_0=1</math>. You may leave your answers in point-slope form. | + | <span class="exam">compute  <math style="vertical-align: -12px">\frac{dy}{dx}</math>  and find the equation for the tangent line at <math style="vertical-align: -3px">x_0=1</math>. You may leave your answers in point-slope form. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 16: | Line 16: | ||
|- | |- | ||
| | | | ||
− | ::For functions <math style="vertical-align: - | + | ::For functions <math style="vertical-align: -5px">f(x)</math>  and <math style="vertical-align: -5px">g(x),</math> <math style="vertical-align: -12px">~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x).</math> |
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
− | + | == 2 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
Line 46: | Line 46: | ||
|Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2.</math> | |Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2.</math> | ||
|} | |} | ||
− | + | == 1 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 11:40, 4 March 2016
If
compute and find the equation for the tangent line at . You may leave your answers in point-slope form.
Foundations: |
---|
1. What two pieces of information do you need to write the equation of a line? |
|
2. What does the Chain Rule state? |
|
Solution:
2
Step 1: |
---|
First, we compute We get |
|
Step 2: |
---|
To find the equation of the tangent line, we first find the slope of the line. |
Using in the formula for from Step 1, we get |
|
To get a point on the line, we plug in into the equation given. |
So, we have |
Thus, the equation of the tangent line is |
1
Final Answer: |
---|