Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
   \right.
 
   \right.
 
</math>
 
</math>
<span class="exam">a) Show that <math style="vertical-align: -3px">f(x)</math> is continuous at <math style="vertical-align: 0px">x=3</math>.
+
<span class="exam">a) Show that <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: 0px">x=3</math>.
  
 
<span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: 0px">x=3</math>.
 
<span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: 0px">x=3</math>.
 
+
== 1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
Line 23: Line 23:
  
 
'''Solution:'''
 
'''Solution:'''
 
+
== 2 ==
 
'''(a)'''
 
'''(a)'''
  
Line 66: Line 66:
 
|Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
 
|Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
 
|}
 
|}
 
+
== 3 ==
 
'''(b)'''
 
'''(b)'''
  
Line 118: Line 118:
 
|<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3.</math>
 
|<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3.</math>
 
|}
 
|}
 
+
== 4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 11:19, 4 March 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

1

Foundations:  
Recall:
1. is continuous at if
2. The definition of derivative for is

Solution:

2

(a)

Step 1:  
We first calculate We have
Step 2:  
Now, we calculate We have
Step 3:  
Now, we calculate We have
Since is continuous.

3

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
Step 2:  
Now, we have
Step 3:  
Since
is differentiable at

4

Final Answer:  
(a) Since is continuous.
(b) Since
is differentiable at

Return to Sample Exam