Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
(→Temp1) |
(→Temp2) |
||
Line 34: | Line 34: | ||
|- | |- | ||
| | | | ||
− | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math> | + | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math> |
|- | |- | ||
− | |So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have | + | |So, we can cancel <math style="vertical-align: -2px">x+3</math>  in the numerator and denominator. Thus, we have |
|- | |- | ||
| | | | ||
− | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math> | + | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math> |
|} | |} | ||
Line 45: | Line 45: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we can just plug in <math style="vertical-align: | + | |Now, we can just plug in <math style="vertical-align: -1px">x=-3</math>  to get |
|- | |- | ||
| | | | ||
− | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math> | + | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math> |
|} | |} | ||
+ | |||
== Temp3 == | == Temp3 == | ||
'''(b)''' | '''(b)''' |
Revision as of 11:13, 4 March 2016
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
a)
b)
c)
Temp1
Foundations: |
---|
Recall: |
L'Hôpital's Rule |
Suppose that and are both zero or both |
|
|
Solution:
Temp2
(a)
Step 1: |
---|
We begin by factoring the numerator. We have |
|
So, we can cancel in the numerator and denominator. Thus, we have |
|
Step 2: |
---|
Now, we can just plug in to get |
|
Temp3
(b)
Step 1: |
---|
We proceed using L'Hopital's Rule. So, we have |
|
Step 2: |
---|
This limit is |
Temp4
(c)
Step 1: |
---|
We have |
|
Since we are looking at the limit as goes to negative infinity, we have |
So, we have |
|
Step 2: |
---|
We simplify to get |
|
So, we have |
|
Temp5
Final Answer: |
---|
(a) . |
(b) |
(c) |