Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''L'Hopital's Rule'''  
+
|'''L'Hôpital's Rule'''  
 
|-
 
|-
|Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
|Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
::If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty ,</math>
+
::If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&thinsp; is finite or&thinsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
::then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
+
::then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  
 
'''Solution:'''
 
'''Solution:'''
 +
 
== Temp2 ==
 
== Temp2 ==
 
'''(a)'''
 
'''(a)'''

Revision as of 11:11, 4 March 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Temp1

Foundations:  
Recall:
L'Hôpital's Rule
Suppose that   and   are both zero or both
If   is finite or 
then

Solution:

Temp2

(a)

Step 1:  
We begin by factoring the numerator. We have
So, we can cancel in the numerator and denominator. Thus, we have
Step 2:  
Now, we can just plug in to get

Temp3

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is

Temp4

(c)

Step 1:  
We have
Since we are looking at the limit as goes to negative infinity, we have
So, we have
Step 2:  
We simplify to get
So, we have

Temp5

Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam