Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
(→Temp1) |
|||
| Line 12: | Line 12: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''L' | + | |'''L'Hôpital's Rule''' |
|- | |- | ||
| − | |Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> | + | |Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>  and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>  are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> |
|- | |- | ||
| | | | ||
| − | ::If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: - | + | ::If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>  is finite or  <math style="vertical-align: -4px">\pm \infty ,</math> |
|- | |- | ||
| | | | ||
| − | ::then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | + | ::then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> |
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
| + | |||
== Temp2 == | == Temp2 == | ||
'''(a)''' | '''(a)''' | ||
Revision as of 11:11, 4 March 2016
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
a)
b)
c)
Temp1
| Foundations: |
|---|
| Recall: |
| L'Hôpital's Rule |
| Suppose that and are both zero or both |
|
|
Solution:
Temp2
(a)
| Step 1: |
|---|
| We begin by factoring the numerator. We have |
|
|
| So, we can cancel in the numerator and denominator. Thus, we have |
|
|
| Step 2: |
|---|
| Now, we can just plug in to get |
|
|
Temp3
(b)
| Step 1: |
|---|
| We proceed using L'Hopital's Rule. So, we have |
|
|
| Step 2: |
|---|
| This limit is |
Temp4
(c)
| Step 1: |
|---|
| We have |
|
|
| Since we are looking at the limit as goes to negative infinity, we have |
| So, we have |
|
|
| Step 2: |
|---|
| We simplify to get |
|
|
| So, we have |
|
|
Temp5
| Final Answer: |
|---|
| (a) . |
| (b) |
| (c) |