Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 6: | Line 6: | ||
<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math> | <span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math> | ||
− | + | == Temp1 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
Line 24: | Line 24: | ||
'''Solution:''' | '''Solution:''' | ||
− | + | == Temp2 == | |
'''(a)''' | '''(a)''' | ||
Line 49: | Line 49: | ||
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math> | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math> | ||
|} | |} | ||
− | + | == Temp3 == | |
'''(b)''' | '''(b)''' | ||
Line 70: | Line 70: | ||
|This limit is <math>+\infty.</math> | |This limit is <math>+\infty.</math> | ||
|} | |} | ||
− | + | == Temp4 == | |
'''(c)''' | '''(c)''' | ||
Line 102: | Line 102: | ||
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math> | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math> | ||
|} | |} | ||
− | + | == Temp5 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 11:07, 4 March 2016
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
a)
b)
c)
Temp1
Foundations: |
---|
Recall: |
L'Hopital's Rule |
Suppose that and are both zero or both |
|
|
Solution:
Temp2
(a)
Step 1: |
---|
We begin by factoring the numerator. We have |
|
So, we can cancel in the numerator and denominator. Thus, we have |
|
Step 2: |
---|
Now, we can just plug in to get |
|
Temp3
(b)
Step 1: |
---|
We proceed using L'Hopital's Rule. So, we have |
|
Step 2: |
---|
This limit is |
Temp4
(c)
Step 1: |
---|
We have |
|
Since we are looking at the limit as goes to negative infinity, we have |
So, we have |
|
Step 2: |
---|
We simplify to get |
|
So, we have |
|
Temp5
Final Answer: |
---|
(a) . |
(b) |
(c) |