Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
 
<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
 
+
== Temp1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
Line 24: Line 24:
  
 
'''Solution:'''
 
'''Solution:'''
 
+
== Temp2 ==
 
'''(a)'''
 
'''(a)'''
  
Line 49: Line 49:
 
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math>
 
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math>
 
|}
 
|}
 
+
== Temp3 ==
 
'''(b)'''
 
'''(b)'''
  
Line 70: Line 70:
 
|This limit is <math>+\infty.</math>
 
|This limit is <math>+\infty.</math>
 
|}
 
|}
 
+
== Temp4 ==
 
'''(c)'''
 
'''(c)'''
  
Line 102: Line 102:
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
 
|}
 
|}
 
+
== Temp5 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 11:07, 4 March 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Temp1

Foundations:  
Recall:
L'Hopital's Rule
Suppose that and are both zero or both
If is finite or
then

Solution:

Temp2

(a)

Step 1:  
We begin by factoring the numerator. We have
So, we can cancel in the numerator and denominator. Thus, we have
Step 2:  
Now, we can just plug in to get

Temp3

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is

Temp4

(c)

Step 1:  
We have
Since we are looking at the limit as goes to negative infinity, we have
So, we have
Step 2:  
We simplify to get
So, we have

Temp5

Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam