Difference between revisions of "009A Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x)</math>, we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x</math>.
+
|'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math>
 
|-
 
|-
 
|
 
|
 
::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined.  
 
::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined.  
 
|-
 
|-
|'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b]</math>,
+
|'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math>
 
|-
 
|-
 
|
 
|
::we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math>.
+
::we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b).</math>
 
|}
 
|}
  
Line 31: Line 31:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x)</math>.
+
|To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x).</math>
 
|-
 
|-
 
|Using the Product Rule, we have
 
|Using the Product Rule, we have
Line 39: Line 39:
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}}\\
+
& = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 46: Line 46:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0</math>.
+
|Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0.</math>
 
|-
 
|-
|Now, we need to set <math style="vertical-align: -5px">f'(x)=0</math>.
+
|Now, we need to set <math style="vertical-align: -5px">f'(x)=0.</math>
 
|-
 
|-
 
|So, we get  
 
|So, we get  
 
|-
 
|-
 
|
 
|
::<math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}</math>.
+
::<math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}.</math>
 
|-
 
|-
|We cross multiply to get <math style="vertical-align: 1px">-3x=x-8</math>.
+
|We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math>
 
|-
 
|-
|Solving, we get <math style="vertical-align: -1px">x=2</math>.
+
|Solving, we get <math style="vertical-align: -1px">x=2.</math>
 
|-
 
|-
|Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>.
+
|Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math>
 
|}
 
|}
  
Line 69: Line 69:
 
|We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval.  
 
|We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval.  
 
|-
 
|-
|Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0</math>.
+
|Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0.</math>
 
|}
 
|}
  
Line 77: Line 77:
 
|Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math>  
 
|Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math>  
 
|-
 
|-
|and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math>.
+
|and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math>
 
|}
 
|}
  
Line 85: Line 85:
 
|'''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>
 
|'''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>
 
|-
 
|-
|'''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math>.
+
|'''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:13, 1 March 2016

Consider the following continuous function:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^{1/3}(x-8)}

defined on the closed, bounded interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-8,8]} .

a) Find all the critical points for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} .

b) Determine the absolute maximum and absolute minimum values for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} on the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-8,8]} .

Foundations:  
Recall:
1. To find the critical points for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x),} we set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=0} and solve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}
Also, we include the values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} is undefined.
2. To find the absolute maximum and minimum of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} on an interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b],}
we need to compare the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} values of our critical points with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(b).}

Solution:

(a)

Step 1:  
To find the critical points, first we need to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x).}
Using the Product Rule, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\ &&\\ & = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}.}\\ \end{array}}
Step 2:  
Notice Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} is undefined when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.}
Now, we need to set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=0.}
So, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}.}
We cross multiply to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3x=x-8.}
Solving, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2.}
Thus, the critical points for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,2^{\frac{1}{3}}(-6)).}

(b)

Step 1:  
We need to compare the values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} at the critical points and at the endpoints of the interval.
Using the equation given, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-8)=32} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(8)=0.}
Step 2:  
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 32}
and the absolute minimum value for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\frac{1}{3}}(-6).}
Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,2^{\frac{1}{3}}(-6))}
(b) The absolute minimum value for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\frac{1}{3}}(-6).}

Return to Sample Exam