Difference between revisions of "009A Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' <math style="vertical-align: -5px">f(x)</math> is increasing when <math style="vertical-align: -5px">f'(x)>0</math> and <math style="vertical-align: -5px">f(x)</math> is decreasing when <math style="vertical-align: -5px">f'(x)<0</math>
+
|'''1.''' <math style="vertical-align: -5px">f(x)</math> is increasing when <math style="vertical-align: -5px">f'(x)>0</math> and <math style="vertical-align: -5px">f(x)</math> is decreasing when <math style="vertical-align: -5px">f'(x)<0.</math>
 
|-
 
|-
 
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
|-
 
|-
|'''3.''' <math style="vertical-align: -5px">f(x)</math> is concave up when <math style="vertical-align: -5px">f''(x)>0</math> and <math style="vertical-align: -5px">f(x)</math> is concave down when <math style="vertical-align: -5px">f''(x)<0</math>
+
|'''3.''' <math style="vertical-align: -5px">f(x)</math> is concave up when <math style="vertical-align: -5px">f''(x)>0</math> and <math style="vertical-align: -5px">f(x)</math> is concave down when <math style="vertical-align: -5px">f''(x)<0.</math>
 
|-
 
|-
|'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0</math>.
+
|'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math>
 
|}
 
|}
  
Line 32: Line 32:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by taking the derivative of <math style="vertical-align: -5px">f(x)</math>. We have <math style="vertical-align: -5px">f'(x)=3x^2-12x</math>.
+
|We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math> We have <math style="vertical-align: -5px">f'(x)=3x^2-12x.</math>
 
|-
 
|-
|Now, we set <math style="vertical-align: -5px">f'(x)=0</math>. So, we have <math style="vertical-align: -5px">0=3x(x-4)</math>.
+
|Now, we set <math style="vertical-align: -5px">f'(x)=0.</math> So, we have <math style="vertical-align: -5px">0=3x(x-4).</math>
 
|-
 
|-
|Hence, we have <math style="vertical-align: -1px">x=0</math> and <math style="vertical-align: -1px">x=4</math>.
+
|Hence, we have <math style="vertical-align: -1px">x=0</math> and <math style="vertical-align: -1px">x=4.</math>
 
|-
 
|-
|So, these values of <math style="vertical-align: -1px">x</math> break up the number line into 3 intervals: <math style="vertical-align: -3px">(-\infty,0),(0,4),(4,\infty)</math>.
+
|So, these values of <math style="vertical-align: -1px">x</math> break up the number line into 3 intervals: <math style="vertical-align: -3px">(-\infty,0),(0,4),(4,\infty).</math>
 
|}
 
|}
  
Line 46: Line 46:
 
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.  
 
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.  
 
|-
 
|-
|For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0</math>.
+
|For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0.</math>
 
|-
 
|-
|For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0</math>.
+
|For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0.</math>
 
|-
 
|-
|For <math style="vertical-align: -5px">x=5,~f'(x)=15>0</math>.
+
|For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math>
 
|-
 
|-
|Thus, <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty)</math> and decreasing on <math style="vertical-align: -5px">(0,4)</math>.
+
|Thus, <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty)</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math>
 
|}
 
|}
  
Line 60: Line 60:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|By the First Derivative Test, the local maximum occurs at <math style="vertical-align: -1px">x=0</math> and the local minimum occurs at <math style="vertical-align: -1px">x=4</math>.
+
|By the First Derivative Test, the local maximum occurs at <math style="vertical-align: -1px">x=0</math> and the local minimum occurs at <math style="vertical-align: -1px">x=4.</math>
 
|}
 
|}
  
Line 66: Line 66:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27</math>.
+
|So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math>
 
|}
 
|}
  
Line 74: Line 74:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x)</math>.
+
|To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math>
 
|-
 
|-
|We have <math style="vertical-align: -5px">f''(x)=6x-12</math>.
+
|We have <math style="vertical-align: -5px">f''(x)=6x-12.</math>
 
|-
 
|-
|We set <math style="vertical-align: -5px">f''(x)=0</math>.
+
|We set <math style="vertical-align: -5px">f''(x)=0.</math>
 
|-
 
|-
|So, we have <math style="vertical-align: -1px">0=6x-12</math>. Hence, <math style="vertical-align: -1px">x=2</math>.
+
|So, we have <math style="vertical-align: -1px">0=6x-12.</math> Hence, <math style="vertical-align: -1px">x=2.</math>
 
|-
 
|-
|This value breaks up the number line into two intervals: <math style="vertical-align: -5px">(-\infty,2),(2,\infty)</math>.
+
|This value breaks up the number line into two intervals: <math style="vertical-align: -5px">(-\infty,2),(2,\infty).</math>
 
|}
 
|}
  

Revision as of 12:48, 1 March 2016

Given the function ,

a) Find the intervals in which the function increases or decreases.

b) Find the local maximum and local minimum values.

c) Find the intervals in which the function concaves upward or concaves downward.

d) Find the inflection point(s).

e) Use the above information (a) to (d) to sketch the graph of .

Foundations:  
Recall:
1. is increasing when and is decreasing when
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3. is concave up when and is concave down when
4. Inflection points occur when

Solution:

(a)

Step 1:  
We start by taking the derivative of We have
Now, we set So, we have
Hence, we have and
So, these values of break up the number line into 3 intervals:
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For
For
For
Thus, is increasing on and decreasing on

(b)

Step 1:  
By the First Derivative Test, the local maximum occurs at and the local minimum occurs at
Step 2:  
So, the local maximum value is and the local minimum value is

(c)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find
We have
We set
So, we have Hence,
This value breaks up the number line into two intervals:
Step 2:  
Again, we use test points in these two intervals.
For , we have .
For , we have .
Thus, is concave up on the interval and concave down on the interval .

(d)

Step 1:  
Using the information from part (c), there is one inflection point that occurs at .
Now, we have .
So, the inflection point is .

(e)

Step 1:  
Insert sketch here.
Final Answer:  
(a) is increasing on and decreasing on .
(b) The local maximum value is and the local minimum value is .
(c) is concave up on the interval and concave down on the interval .
(d)
(e) See Step 1 for graph.

Return to Sample Exam