Difference between revisions of "009A Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Let   
 
<span class="exam">Let   
  
::::::<math>y=x^3</math>
+
::::::<math>y=x^3.</math>
  
 
<span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
 
<span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
Line 10: Line 10:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|What is the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^2</math> at <math style="vertical-align: -1px">x=1</math>?
+
|What is the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^2</math> at <math style="vertical-align: -1px">x=1?</math>
 
|-
 
|-
 
|
 
|
::Since <math style="vertical-align: -1px">x=1</math>, the differential is <math style="vertical-align: -4px">dy=2xdx=2dx</math>.
+
::Since <math style="vertical-align: -1px">x=1,</math> the differential is <math style="vertical-align: -4px">dy=2xdx=2dx.</math>
 
|}
 
|}
  
Line 23: Line 23:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we find the differential <math>dy</math>.
+
|First, we find the differential <math>dy.</math>
 
|-
 
|-
|Since <math style="vertical-align: -5px">y=x^3</math>, we have
+
|Since <math style="vertical-align: -5px">y=x^3,</math> we have
 
|-
 
|-
 
|
 
|
::<math>dy=3x^2dx</math>.
+
::<math>dy=3x^2dx.</math>
 
|}
 
|}
  
Line 39: Line 39:
 
|-
 
|-
 
|
 
|
::<math>dy=3(2)^2dx=12dx</math>.
+
::<math>dy=3(2)^2dx=12dx.</math>
 
|}
 
|}
  
Line 47: Line 47:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we find <math style="vertical-align: -1px">dx</math>. We have <math style="vertical-align: -1px">dx=1.9-2=-0.1</math>.
+
|First, we find <math style="vertical-align: -1px">dx</math>. We have <math style="vertical-align: -1px">dx=1.9-2=-0.1.</math>
 
|-
 
|-
 
|Then, we plug this into the differential from part '''(a)'''.
 
|Then, we plug this into the differential from part '''(a)'''.
Line 54: Line 54:
 
|-
 
|-
 
|
 
|
::<math>dy=12(-0.1)=-1.2</math>.
+
::<math>dy=12(-0.1)=-1.2.</math>
 
|}
 
|}
  
Line 62: Line 62:
 
|Now, we add the value for <math style="vertical-align: -4px">dy</math> to <math style="vertical-align: 0px">2^3</math> to get an
 
|Now, we add the value for <math style="vertical-align: -4px">dy</math> to <math style="vertical-align: 0px">2^3</math> to get an
 
|-
 
|-
|approximate value of <math style="vertical-align: -1px">1.9^3</math>.
+
|approximate value of <math style="vertical-align: -1px">1.9^3.</math>
 
|-
 
|-
 
|Hence, we have  
 
|Hence, we have  
 
|-
 
|-
 
|
 
|
::<math>1.9^3\approx 2^3+-1.2=6.8</math>.
+
::<math>1.9^3\approx 2^3+-1.2=6.8.</math>
 
|}
 
|}
  

Revision as of 12:44, 1 March 2016

Let

a) Find the differential of at .

b) Use differentials to find an approximate value for .

Foundations:  
What is the differential of at
Since the differential is

Solution:

(a)

Step 1:  
First, we find the differential
Since we have
Step 2:  
Now, we plug in into the differential from Step 1.
So, we get

(b)

Step 1:  
First, we find . We have
Then, we plug this into the differential from part (a).
So, we have
Step 2:  
Now, we add the value for to to get an
approximate value of
Hence, we have
Final Answer:  
(a)
(b)

Return to Sample Exam