Difference between revisions of "009C Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
|- | |- | ||
| | | | ||
− | ::<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!} </math> | + | ::<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> |
|} | |} | ||
Line 61: | Line 61: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!} </math> | + | |Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> is |
| | | | ||
|- | |- |
Revision as of 11:44, 1 March 2016
Find the Taylor polynomial of degree 4 of at .
Foundations: |
---|
The Taylor polynomial of at is |
|
Solution:
Step 1: | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||||||
|
Step 2: | |
---|---|
Since the Taylor polynomial of degree 4 of is | |
|
Final Answer: |
---|