Difference between revisions of "009C Sample Final 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 11: | Line 11: | ||
|- | |- | ||
| | | | ||
| − | ::If <math style="vertical-align: -1px">L<1</math> | + | ::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent. |
|- | |- | ||
| | | | ||
| − | ::If <math style="vertical-align: -1px">L>1</math> | + | ::If <math style="vertical-align: -1px">L>1,</math> the series is divergent. |
|- | |- | ||
| | | | ||
| − | ::If <math style="vertical-align: -1px">L=1</math> | + | ::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive. |
|- | |- | ||
|'''2.''' If a series absolutely converges, then it also converges. | |'''2.''' If a series absolutely converges, then it also converges. | ||
Revision as of 10:30, 1 March 2016
Determine whether the following series converges or diverges.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}}
| Foundations: |
|---|
| Recall: |
| 1. Ratio Test Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum a_n} be a series and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.} Then, |
|
|
|
| 2. If a series absolutely converges, then it also converges. |
Solution:
| Step 1: |
|---|
| We proceed using the ratio test. |
| We have |
|
| Step 2: |
|---|
| Now, we continue to calculate the limit from Step 1. We have |
|
| Step 3: |
|---|
| Now, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).} |
| First, we write the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.} |
| Now, we use L'Hopital's Rule to get |
|
| Step 4: |
|---|
| We go back to Step 2 and use the limit we calculated in Step 3. |
| So, we have |
|
| Thus, the series absolutely converges by the Ratio Test. |
| Since the series absolutely converges, the series also converges. |
| Final Answer: |
|---|
| The series converges. |