Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
|-
 
|-
 
|
 
|
::between <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: -1px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c</math>.
+
::between <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: -1px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math>
 
|-
 
|-
 
|'''2. Mean Value Theorem''' Suppose <math style="vertical-align: -5px">f(x)</math> is a function that satisfies the following:
 
|'''2. Mean Value Theorem''' Suppose <math style="vertical-align: -5px">f(x)</math> is a function that satisfies the following:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -5px">f(x)</math> is continuous on the closed interval <math style="vertical-align: -5px">[a,b]</math>.
+
::<math style="vertical-align: -5px">f(x)</math> is continuous on the closed interval <math style="vertical-align: -5px">[a,b].</math>
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -5px">f(x)</math> is differentiable on the open interval <math style="vertical-align: -5px">(a,b)</math>.
+
::<math style="vertical-align: -5px">f(x)</math> is differentiable on the open interval <math style="vertical-align: -5px">(a,b).</math>
 
|-
 
|-
 
|
 
|
::Then, there is a number <math style="vertical-align: -1px">c</math> such that <math style="vertical-align: -1px">a<c<b</math> and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}</math>.
+
::Then, there is a number <math style="vertical-align: -1px">c</math> such that <math style="vertical-align: -1px">a<c<b</math> and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math>
 
|}
 
|}
  
Line 36: Line 36:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First note that <math style="vertical-align: -3px">f(0)=7</math>.
+
|First note that <math style="vertical-align: -3px">f(0)=7.</math>
 
|-
 
|-
|Also, <math style="vertical-align: -3px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5)</math>.
+
|Also, <math style="vertical-align: -3px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math>
 
|-
 
|-
|Since <math style="vertical-align: -3px">-1\leq \sin(x) \leq 1</math>,
+
|Since <math style="vertical-align: -3px">-1\leq \sin(x) \leq 1,</math>
 
|-
 
|-
 
|
 
|
::<math>-2\leq -2\sin(x) \leq 2</math>.
+
::<math>-2\leq -2\sin(x) \leq 2.</math>
 
|-
 
|-
|Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0</math>.
+
|Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0.</math>
 
|}
 
|}
  
Line 51: Line 51:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that  
+
|Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0,</math> there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that  
 
|-
 
|-
 
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
 
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
Line 61: Line 61:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exists <math style="vertical-align: -5px">a,b</math> such that <math style="vertical-align: -5px">f(a)=f(b)=0</math>.
+
|Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exists <math style="vertical-align: -5px">a,b</math> such that <math style="vertical-align: -5px">f(a)=f(b)=0.</math>
 
|-
 
|-
|Then, by the Mean Value Theorem, there exists <math style="vertical-align: -1px">c</math> with <math style="vertical-align: -1px">a<c<b</math> such that <math style="vertical-align: -5px">f'(c)=0</math>.
+
|Then, by the Mean Value Theorem, there exists <math style="vertical-align: -1px">c</math> with <math style="vertical-align: -1px">a<c<b</math> such that <math style="vertical-align: -5px">f'(c)=0.</math>
 
|}
 
|}
  
Line 69: Line 69:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x)</math>. Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1</math>,
+
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math> Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
 
|-
 
|-
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2</math>. So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5</math>,
+
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math> So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
 
|-
 
|-
|which contradicts <math style="vertical-align: -5px">f'(c)=0</math>. Thus, <math style="vertical-align: -5px">f(x)</math> has at most one zero.
+
|which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math> has at most one zero.
 
|}
 
|}
  
Line 79: Line 79:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that  
+
|'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0,</math> there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that  
 
|-
 
|-
 
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
 
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.

Revision as of 12:35, 29 February 2016

Consider the following function:

a) Use the Intermediate Value Theorem to show that has at least one zero.

b) Use the Mean Value Theorem to show that has at most one zero.

Foundations:  
Recall:
1. Intermediate Value Theorem If is continuous on a closed interval and is any number
between and , then there is at least one number in the closed interval such that
2. Mean Value Theorem Suppose is a function that satisfies the following:
is continuous on the closed interval
is differentiable on the open interval
Then, there is a number such that and

Solution:

(a)

Step 1:  
First note that
Also,
Since
Thus, and hence
Step 2:  
Since and there exists with such that
by the Intermediate Value Theorem. Hence, has at least one zero.

(b)

Step 1:  
Suppose that has more than one zero. So, there exists such that
Then, by the Mean Value Theorem, there exists with such that
Step 2:  
We have Since
So,
which contradicts Thus, has at most one zero.
Final Answer:  
(a) Since and there exists with such that
by the Intermediate Value Theorem. Hence, has at least one zero.
(b) See Step 1 and Step 2 above.

Return to Sample Exam