Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{\bigg(\frac{x^2-1}{x^2+1}\bigg)}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{\bigg(\frac{x^2-1}{x^2+1}\bigg)}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
+
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg).}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 37: Line 37:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to calculate <math>\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)</math>.
+
|Now, we need to calculate <math>\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg).</math>
 
|-
 
|-
 
|To do this, we use the Quotient Rule. So, we have
 
|To do this, we use the Quotient Rule. So, we have
Line 51: Line 51:
 
& = & \displaystyle{\frac{4x}{(x^2-1)(x^2+1)}}\\
 
& = & \displaystyle{\frac{4x}{(x^2-1)(x^2+1)}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{4x}{x^4-1}}\\
+
& = & \displaystyle{\frac{4x}{x^4-1}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 63: Line 63:
 
|-
 
|-
 
|
 
|
::<math>g'(x)=8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)</math>.
+
::<math>g'(x)=8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg).</math>
 
|}
 
|}
  
Line 69: Line 69:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We need to calculate <math>\frac{d}{dx}\sqrt{1+x^3}</math>.
+
|We need to calculate <math>\frac{d}{dx}\sqrt{1+x^3}.</math>
 
|-
 
|-
 
|We use the Chain Rule again to get
 
|We use the Chain Rule again to get
Line 79: Line 79:
 
& = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\frac{1}{2}(1+x^3)^{-\frac{1}{2}}3x^2}\\
 
& = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\frac{1}{2}(1+x^3)^{-\frac{1}{2}}3x^2}\\
 
&&\\
 
&&\\
& = & \displaystyle{8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}}\\
+
& = & \displaystyle{8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 88: Line 88:
 
|'''(a)''' <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math>
 
|'''(a)''' <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math>
 
|-
 
|-
|'''(b)''' <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>.
+
|'''(b)''' <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:29, 29 February 2016

Find the derivatives of the following functions.

a)

b)

Foundations:  
For functions , recall
Chain Rule
Quotient Rule
Trig derivatives

Solution:

(a)

Step 1:  
Using the Chain Rule, we have
Step 2:  
Now, we need to calculate
To do this, we use the Quotient Rule. So, we have

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
Step 2:  
We need to calculate
We use the Chain Rule again to get
Final Answer:  
(a)
(b)

Return to Sample Exam