Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 17: | Line 17: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''1.''' <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=a</math> if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a)</math> | + | |'''1.''' <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=a</math> if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math> |
|- | |- | ||
| − | |'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math> | + | |'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math> |
|} | |} | ||
| Line 29: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We first calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)</math> | + | |We first calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x).</math> We have |
|- | |- | ||
| | | | ||
| Line 37: | Line 37: | ||
& = & \displaystyle{4\sqrt{3+1}}\\ | & = & \displaystyle{4\sqrt{3+1}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{8} | + | & = & \displaystyle{8.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 44: | Line 44: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^-}f(x)</math> | + | |Now, we calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^-}f(x).</math> We have |
|- | |- | ||
| | | | ||
| Line 52: | Line 52: | ||
& = & \displaystyle{3+5}\\ | & = & \displaystyle{3+5}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{8} | + | & = & \displaystyle{8.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 59: | Line 59: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Now, we calculate <math style="vertical-align: -3px">f(3)</math> | + | |Now, we calculate <math style="vertical-align: -3px">f(3).</math> We have |
|- | |- | ||
| | | | ||
| − | ::<math>f(3)=4\sqrt{3+1}=8</math> | + | ::<math>f(3)=4\sqrt{3+1}=8.</math> |
|- | |- | ||
|Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous. | |Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous. | ||
| Line 82: | Line 82: | ||
& = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\ | & = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{1} | + | & = & \displaystyle{1.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 107: | Line 107: | ||
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ | & = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{1}\\ | + | & = & \displaystyle{1.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 114: | Line 114: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math> | + | |Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math> |
|- | |- | ||
| − | |<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math> | + | |<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3.</math> |
|} | |} | ||
| Line 124: | Line 124: | ||
|'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous. | |'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous. | ||
|- | |- | ||
| − | |'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math> | + | |'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math> |
|- | |- | ||
| | | | ||
| − | ::<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math> | + | ::<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3.</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 12:27, 29 February 2016
Consider the following piecewise defined function:
a) Show that is continuous at .
b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
| Foundations: |
|---|
| Recall: |
| 1. is continuous at if |
| 2. The definition of derivative for is |
Solution:
(a)
| Step 1: |
|---|
| We first calculate We have |
|
|
| Step 2: |
|---|
| Now, we calculate We have |
|
|
| Step 3: |
|---|
| Now, we calculate We have |
|
|
| Since is continuous. |
(b)
| Step 1: |
|---|
| We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
|
| Step 2: |
|---|
| Now, we have |
|
|
| Step 3: |
|---|
| Since |
| is differentiable at |
| Final Answer: |
|---|
| (a) Since is continuous. |
| (b) Since |
|