Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|'''L'Hopital's Rule'''  
 
|'''L'Hopital's Rule'''  
 
|-
 
|-
|Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty</math>.
+
|Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
::If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty</math>,
+
::If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
::then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>.
+
::then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  
Line 33: Line 33:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}</math>.
+
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math>
 
|-
 
|-
 
|So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have
 
|So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}</math>.
+
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math>
 
|}
 
|}
  
Line 47: Line 47:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9</math>.
+
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math>
 
|}
 
|}
  
Line 61: Line 61:
 
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\
 
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{\cos(2x)}{x}}\\
+
& = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{\cos(2x)}{x}.}\\
 
\end{array}</math>
 
\end{array}</math>
|-
 
|
 
 
|}
 
|}
  
Line 70: Line 68:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|This limit is <math>+\infty</math>.
+
|This limit is <math>+\infty.</math>
 
|}
 
|}
  
Line 81: Line 79:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}</math>.
+
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math>
 
|-
 
|-
|Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math style="vertical-align: -3px">\sqrt{x^2}=-x</math>.
+
|Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math style="vertical-align: -3px">\sqrt{x^2}=-x.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>.
+
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
 
|}
 
|}
  
Line 97: Line 95:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>
+
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}</math>.
+
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
 
|}
 
|}
  

Revision as of 12:25, 29 February 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Foundations:  
Recall:
L'Hopital's Rule
Suppose that and are both zero or both
If is finite or
then

Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
So, we can cancel in the numerator and denominator. Thus, we have
Step 2:  
Now, we can just plug in to get

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is

(c)

Step 1:  
We have
Since we are looking at the limit as goes to negative infinity, we have
So, we have
Step 2:  
We simplify to get
So, we have
Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam