Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1</math>,
+
|'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math>  
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}</math>.
+
::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math>
 
|-
 
|-
 
|'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
 
|'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
 
|-
 
|-
 
|
 
|
::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k</math>.
+
::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
 
|}
 
|}
  

Revision as of 11:48, 29 February 2016

Find the sum of the following series:

a)

b)

Foundations:  
Recall:
1. For a geometric series with
2. For a telescoping series, we find the sum by first looking at the partial sum
and then calculate

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since . So,

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let
Then,
Step 2:  
Thus,


Final Answer:  
(a)
(b)

Return to Sample Exam