Difference between revisions of "009C Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 19: Line 19:
 
|-
 
|-
 
|
 
|
::The slope is <math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}</math>.
+
::The slope is <math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
 
|}
 
|}
  
Line 39: Line 39:
 
|First, we need to find the slope of the tangent line.  
 
|First, we need to find the slope of the tangent line.  
 
|-
 
|-
|Since <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> and <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t</math>, we have
+
|Since <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> and <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t,</math> we have
 
|-
 
|-
 
|
 
|
::<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}</math>.
+
::<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}.</math>
 
|-
 
|-
|So, at <math>t_0=\frac{\pi}{4}</math>, the slope of the tangent line is  
+
|So, at <math>t_0=\frac{\pi}{4},</math> the slope of the tangent line is  
 
|-
 
|-
 
|
 
|
::<math>m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}</math>.
+
::<math>m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}.</math>
 
|}
 
|}
  
Line 55: Line 55:
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|-
 
|-
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math style="vertical-align: -5px">x(t)</math> and <math style="vertical-align: -5px">y(t)</math>, we get
+
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math style="vertical-align: -5px">x(t)</math> and <math style="vertical-align: -5px">y(t),</math> we get
 
|-
 
|-
 
|
 
|
Line 61: Line 61:
 
|-
 
|-
 
|
 
|
::<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}</math>.
+
::<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}.</math>
 
|-
 
|-
 
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
 
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
Line 72: Line 72:
 
|-
 
|-
 
|
 
|
::<math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>.
+
::<math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}.</math>
 
|}
 
|}
  

Revision as of 11:46, 29 February 2016

A curve is given in polar parametrically by

a) Sketch the curve.

b) Compute the equation of the tangent line at .

Foundations:  
1. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
2. What is the slope of the tangent line of a parametric curve?
The slope is

Solution:

(a)

Step 1:  
Insert sketch of curve

(b)

Step 1:  
First, we need to find the slope of the tangent line.
Since and we have
So, at the slope of the tangent line is
Step 2:  
Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
If we plug in into the equations for and we get
and
Thus, the point is on the tangent line.
Step 3:  
Using the point found in Step 2, the equation of the tangent line at is
Final Answer:  
(a) See Step 1 above for the graph.
(b)

Return to Sample Exam