Difference between revisions of "009C Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 41: Line 41:
 
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\
+
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 58: Line 58:
 
& = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}}\\
+
& = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 65: Line 65:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)</math>.
+
|Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).</math>
 
|-
 
|-
|First, we write the limit as <math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}</math>.
+
|First, we write the limit as <math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
 
|-
 
|-
 
|Now, we use L'Hopital's Rule to get  
 
|Now, we use L'Hopital's Rule to get  
Line 79: Line 79:
 
& = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\
 
&&\\
 
&&\\
& = & \displaystyle{-1}\\
+
& = & \displaystyle{-1.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 91: Line 91:
 
|-
 
|-
 
|
 
|
::<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1</math>.
+
::<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math>
 
|-
 
|-
 
|Thus, the series absolutely converges by the Ratio Test.
 
|Thus, the series absolutely converges by the Ratio Test.

Revision as of 10:32, 29 February 2016

Determine whether the following series converges or diverges.

Foundations:  
Recall:
1. Ratio Test Let be a series and . Then,
If , the series is absolutely convergent.
If , the series is divergent.
If , the test is inconclusive.
2. If a series absolutely converges, then it also converges.

Solution:

Step 1:  
We proceed using the ratio test.
We have
Step 2:  
Now, we continue to calculate the limit from Step 1. We have
Step 3:  
Now, we need to calculate
First, we write the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.}
Now, we use L'Hopital's Rule to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n(n+1)}(-n^2)}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\ &&\\ & = & \displaystyle{-1.}\\ \end{array}}
Step 4:  
We go back to Step 2 and use the limit we calculated in Step 3.
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.}
Thus, the series absolutely converges by the Ratio Test.
Since the series absolutely converges, the series also converges.
Final Answer:  
The series converges.

Return to Sample Exam