Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 64: Line 64:
 
|}
 
|}
  
== 3 ==
 
 
'''(b)'''
 
'''(b)'''
  

Revision as of 22:58, 25 February 2016

Compute the following integrals.

a)

b)

c)

Foundations:  
Recall:
1. Integration by parts tells us that .
2. Through partial fraction decomposition, we can write the fraction    for some constants .
3. We have the Pythagorean identity .

Solution:

(a)

Step 1:  
We first distribute to get
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since , we let .
Multiplying both sides of the last equation by Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x(2x+1)} ,
we get .
If we let , the last equation becomes .
If we let , then we get  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {3}{2}}=-{\frac {1}{2}}\,B} . Thus, .
So, in summation, we have  .
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int {\frac {2x^{2}+1}{2x^{2}+x}}~dx}&=&\displaystyle {\int ~dx+\int {\frac {1}{x}}~dx+\int {\frac {-3}{2x+1}}~dx}\\&&\\&=&\displaystyle {x+\ln x+\int {\frac {-3}{2x+1}}~dx}.\\\end{array}}}
Step 4:  
For the final remaining integral, we use -substitution.
Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=2x+1} . Then, and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {du}{2}}=dx} .
Thus, our final integral becomes
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int {\frac {2x^{2}+1}{2x^{2}+x}}~dx}&=&\displaystyle {x+\ln x+\int {\frac {-3}{2x+1}}~dx}\\&&\\&=&\displaystyle {x+\ln x+\int {\frac {-3}{2u}}~du}\\&&\\&=&\displaystyle {x+\ln x-{\frac {3}{2}}\ln u+C}.\\\end{array}}}
Therefore, the final answer is

(c)

Step 1:  
First, we write .
Using the identity , we get .
If we use this identity, we have
    Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{3}x~dx=\int (1-\cos ^{2}x)\sin x~dx} .
Step 2:  
Now, we proceed by -substitution. Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=\cos x} . Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=-\sin xdx} .
So we have
Final Answer:  
(a)  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle xe^{x}-e^{x}-\cos(e^{x})+C}
(b)  
(c)  

Return to Sample Exam