Difference between revisions of "009B Sample Final 1, Problem 6"
Jump to navigation
Jump to search
(→3) |
|||
Line 107: | Line 107: | ||
|Since the integral is a definite integral, we need to change the bounds of integration. | |Since the integral is a definite integral, we need to change the bounds of integration. | ||
|- | |- | ||
− | |Plugging in our values into the equation <math style="vertical-align: -1px">u=4-x</math>, we get <math style="vertical-align: -5px">u_1=4-1=3</math> and <math style="vertical-align: -3px">u_2=4-a</math>. | + | |Plugging in our values into the equation <math style="vertical-align: -1px">u=4-x</math>, we get <math style="vertical-align: -5px">u_1=4-1=3</math>  and <math style="vertical-align: -3px">u_2=4-a</math>. |
|- | |- | ||
|Thus, the integral becomes | |Thus, the integral becomes | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-1}{\sqrt{u}}~du</math> | + | ::<math>\int_1^4 \frac{dx}{\sqrt{4-x}}\,=\,\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-1}{\sqrt{u}}~du.</math> |
|} | |} | ||
Line 126: | Line 126: | ||
& = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\ | & = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{2\sqrt{3}}\\ | + | & = & \displaystyle{2\sqrt{3}}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
== 4 == | == 4 == | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 23:09, 25 February 2016
Evaluate the improper integrals:
- a)
- b)
Foundations: |
---|
1. How could you write so that you can integrate? |
|
2. How could you write ? |
|
|
3. How would you integrate ? |
|
|
Solution:
(a)
Step 1: |
---|
First, we write . |
Now, we proceed using integration by parts. Let and . Then, and . |
Thus, the integral becomes |
|
Step 2: |
---|
For the remaining integral, we need to use -substitution. Let . Then, . |
Since the integral is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Thus, the integral becomes |
|
Step 3: |
---|
Now, we evaluate to get |
|
Using L'Hôpital's Rule, we get |
|
3
(b)
Step 1: |
---|
First, we write . |
Now, we proceed by -substitution. We let . Then, . |
Since the integral is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Thus, the integral becomes |
|
Step 2: |
---|
We integrate to get |
|
4
Final Answer: |
---|
(a) |
(b) |