Difference between revisions of "009B Sample Final 1, Problem 7"
Jump to navigation
Jump to search
(→Temp4) |
(→Temp3) |
||
Line 86: | Line 86: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We start by calculating <math>\frac{dy}{dx}</math>. | + | |We start by calculating  <math>\frac{dy}{dx}</math> . |
|- | |- | ||
− | |Since <math style="vertical-align: - | + | |Since <math style="vertical-align: -13px">y=1-x^2,~ \frac{dy}{dx}=-2x</math>. |
|- | |- | ||
|Using the formula given in the Foundations section, we have | |Using the formula given in the Foundations section, we have | ||
|- | |- | ||
| | | | ||
− | ::<math>S=\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx</math> | + | ::<math>S\,=\,\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx.</math> |
|} | |} | ||
Line 99: | Line 99: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we have <math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx</math> | + | |Now, we have <math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math> |
|- | |- | ||
− | |We proceed by using trig substitution. Let <math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta</math>. Then, <math style="vertical-align: -12px">dx=\frac{1}{2}\sec^2\theta d\theta</math>. | + | |We proceed by using trig substitution. Let <math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta</math>. Then, <math style="vertical-align: -12px">dx=\frac{1}{2}\sec^2\theta \,d\theta</math>. |
|- | |- | ||
|So, we have | |So, we have | ||
Line 109: | Line 109: | ||
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\ | \displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}\\ | + | & = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 116: | Line 116: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
− | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=\sec \theta</math>. Then, <math style="vertical-align: -1px">du=\sec \theta \tan \theta d\theta</math>. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=\sec \theta</math>. Then, <math style="vertical-align: -1px">du=\sec \theta \tan \theta \,d\theta</math>. |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
Line 128: | Line 128: | ||
& = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\ | & = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}\\ | + | & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 145: | Line 145: | ||
& = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\ | & = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}\\ | + | & = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
== Temp4 == | == Temp4 == | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 22:34, 25 February 2016
a) Find the length of the curve
- .
b) The curve
is rotated about the -axis. Find the area of the resulting surface.
Foundations: |
---|
Recall: |
1. The formula for the length of a curve where is |
|
2. |
3. The surface area of a function rotated about the -axis is given by |
|
Solution:
Temp2
(a)
Step 1: |
---|
First, we calculate . |
Since . |
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have: |
|
Step 3: |
---|
Finally, |
|
Temp3
(b)
Step 1: |
---|
We start by calculating . |
Since . |
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have |
We proceed by using trig substitution. Let . Then, . |
So, we have |
|
Step 3: |
---|
Now, we use -substitution. Let . Then, . |
So, the integral becomes |
|
Step 4: |
---|
We started with a definite integral. So, using Step 2 and 3, we have |
|
Temp4
Final Answer: |
---|
(a) |
(b) |