Difference between revisions of "009B Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x)</math>
+
|Recall:
 +
|-
 +
|'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|-
 
|
 
|

Revision as of 17:29, 24 February 2016

Consider the area bounded by the following two functions:

and

a) Find the three intersection points of the two given functions. (Drawing may be helpful.)

b) Find the area bounded by the two functions.

Foundations:  
Recall:
1. You can find the intersection points of two functions, say
by setting and solve for .
2. The area between two functions, and , is given by
for where is the upper function and is the lower function.

Solution:

(a)

Step 1:  
First, we graph these two functions.
Insert graph here
Step 2:  
Setting , we get three solutions
So, the three intersection points are .
You can see these intersection points on the graph shown in Step 1.

(b)

Step 1:  
Using symmetry of the graph, the area bounded by the two functions is given by
Step 2:  
Lastly, we integrate to get
Final Answer:  
(a)
(b)

Return to Sample Exam