Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} 4\sqrt{x+1}}\\
+
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{4\sqrt{3+1}}\\
 
& = & \displaystyle{4\sqrt{3+1}}\\
Line 44: Line 44:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} x+5}\\
+
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{3+5}\\
 
& = & \displaystyle{3+5}\\
Line 72: Line 72:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{(3+h)+5-8}{h}}\\
+
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{h}{h}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{h}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}1}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{1}
 
& = & \displaystyle{1}
Line 89: Line 89:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4\sqrt{3+h+1}-8}{h}}\\
+
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\
 
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\

Revision as of 11:19, 24 February 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  

Solution:

(a)

Step 1:  
We first calculate . We have
Step 2:  
Now, we calculate . We have
Step 3:  
Now, we calculate . We have
.
Since is continuous.

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
Step 2:  
Now, we have
Step 3:  
Since ,
is differentiable at .
Final Answer:  
(a) Since is continuous.
(b) Since ,
is differentiable at .

Return to Sample Exam