Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
|Again, we need to use the Chain Rule. We have
 
|Again, we need to use the Chain Rule. We have
 
|-
 
|-
|<math>g'(x)=8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)</math>.
+
|
 +
::<math>g'(x)=8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)</math>.
 
|}
 
|}
  
Line 66: Line 67:
 
|We use the Chain Rule again to get
 
|We use the Chain Rule again to get
 
|-
 
|-
|::<math>\begin{array}{rcl}
+
|
 +
::<math>\begin{array}{rcl}
 
\displaystyle{g'(x)} & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)}\\
 
\displaystyle{g'(x)} & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)}\\
 
&&\\
 
&&\\
Line 78: Line 80:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>f'(x)=\frac{4x}{x^4-1}</math>
+
|'''(a)''' <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math>
 
|-
 
|-
|'''(b)''' <math>g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>.
+
|'''(b)''' <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:03, 22 February 2016

Find the derivatives of the following functions.

a)

b)

Foundations:  
Review chain rule, quotient rule, and derivatives of trig functions

Solution:

(a)

Step 1:  
Using the Chain Rule, we have
Step 2:  
Now, we need to calculate .
To do this, we use the Quotient Rule. So, we have

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
.
Step 2:  
We need to calculate .
We use the Chain Rule again to get
Final Answer:  
(a)
(b) .

Return to Sample Exam