Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Find the derivatives of the following functions.
 
<span class="exam">Find the derivatives of the following functions.
  
<span class="exam">a) <math>f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)</math>
+
<span class="exam">a) <math style="vertical-align: -14px">f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)</math>
  
<span class="exam">b) <math>g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
+
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 18: Line 18:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using the chain rule, we have
+
|Using the Chain Rule, we have
 
|-
 
|-
 
|
 
|
Line 33: Line 33:
 
|Now, we need to calculate <math>\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)</math>.
 
|Now, we need to calculate <math>\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)</math>.
 
|-
 
|-
|To do this, we use the Chain Rule. So, we have
+
|To do this, we use the Quotient Rule. So, we have
 
|-
 
|-
 
|
 
|

Revision as of 15:01, 22 February 2016

Find the derivatives of the following functions.

a)

b)

Foundations:  
Review chain rule, quotient rule, and derivatives of trig functions

Solution:

(a)

Step 1:  
Using the Chain Rule, we have
Step 2:  
Now, we need to calculate .
To do this, we use the Quotient Rule. So, we have

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
.
Step 2:  
We need to calculate .
We use the Chain Rule again to get
::
Final Answer:  
(a)
(b) .

Return to Sample Exam