Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 25: Line 25:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We first calculate <math style="vertical-align: -12px">\lim_{x\rightarrow 3^+}f(x)</math>. We have
+
|We first calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)</math>. We have
 
|-
 
|-
 
|
 
|
Line 40: Line 40:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we calculate <math style="vertical-align: -12px">\lim_{x\rightarrow 3^-}f(x)</math>. We have
+
|Now, we calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 3^-}f(x)</math>. We have
 
|-
 
|-
 
|
 
|
Line 55: Line 55:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, we calculate <math style="vertical-align:-10%">f(3)</math>. We have
+
|Now, we calculate <math style="vertical-align: -3px">f(3)</math>. We have
 
|-
 
|-
|<math>f(3)=4\sqrt{3+1}=8</math>.
+
|
 +
::<math>f(3)=4\sqrt{3+1}=8</math>.
 
|-
 
|-
|Since <math style="vertical-align: -12px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math style="vertical-align: -2px">f(x)</math> is continuous.
+
|Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
 
|}
 
|}
  
Line 109: Line 110:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,  
+
|Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,  
 
|-
 
|-
|<math>f(x)</math> is differentiable at <math>x=3</math>.
+
|<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math>.
 
|}
 
|}
  
Line 117: Line 118:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous.
+
|'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math> is continuous.
 
|-
 
|-
|'''(b)''' Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,  
+
|'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,  
 
|-
 
|-
|<math>f(x)</math> is differentiable at <math>x=3</math>.
+
|
 +
::<math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: -1px">x=3</math>.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:56, 22 February 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  

Solution:

(a)

Step 1:  
We first calculate . We have
Step 2:  
Now, we calculate . We have
Step 3:  
Now, we calculate . We have
.
Since is continuous.

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
Step 2:  
Now, we have
Step 3:  
Since ,
is differentiable at .
Final Answer:  
(a) Since is continuous.
(b) Since ,
is differentiable at .

Return to Sample Exam