Difference between revisions of "009C Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 33: | Line 33: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Since <math>2<e | + | |Since <math style="vertical-align: -16px">2<e,~\bigg|-\frac{2}{e}\bigg|<1</math>. So, |
|- | |- | ||
| − | |<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>. | + | | |
| + | ::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>. | ||
|} | |} | ||
| Line 45: | Line 46: | ||
|This is a telescoping series. First, we find the partial sum of this series. | |This is a telescoping series. First, we find the partial sum of this series. | ||
|- | |- | ||
| − | |Let <math>s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>. | + | |Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>. |
|- | |- | ||
| − | |Then, <math>s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>. | + | |Then, <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>. |
|} | |} | ||
| Line 53: | Line 54: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Thus, <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math> | + | |Thus, |
| + | |- | ||
| + | | | ||
| + | ::<math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math> | ||
|} | |} | ||
Revision as of 13:23, 22 February 2016
Find the sum of the following series:
a)
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)}
| Foundations: |
|---|
| Review geometric series. |
| Review telescoping series. |
Solution:
(a)
| Step 1: |
|---|
| First, we write |
|
| Step 2: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2<e,~\bigg|-\frac{2}{e}\bigg|<1} . So, |
|
(b)
| Step 1: |
|---|
| This is a telescoping series. First, we find the partial sum of this series. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} . |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k=\frac{1}{2}-\frac{1}{2^{k+1}}} . |
| Step 2: |
|---|
| Thus, |
|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e}{e+2}} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} |