Difference between revisions of "009C Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 33: | Line 33: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Since <math>2<e | + | |Since <math style="vertical-align: -16px">2<e,~\bigg|-\frac{2}{e}\bigg|<1</math>. So, |
|- | |- | ||
− | |<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>. | + | | |
+ | ::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>. | ||
|} | |} | ||
Line 45: | Line 46: | ||
|This is a telescoping series. First, we find the partial sum of this series. | |This is a telescoping series. First, we find the partial sum of this series. | ||
|- | |- | ||
− | |Let <math>s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>. | + | |Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>. |
|- | |- | ||
− | |Then, <math>s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>. | + | |Then, <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>. |
|} | |} | ||
Line 53: | Line 54: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Thus, <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math> | + | |Thus, |
+ | |- | ||
+ | | | ||
+ | ::<math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math> | ||
|} | |} | ||
Revision as of 14:23, 22 February 2016
Find the sum of the following series:
a)
b)
Foundations: |
---|
Review geometric series. |
Review telescoping series. |
Solution:
(a)
Step 1: |
---|
First, we write |
|
Step 2: |
---|
Since . So, |
|
(b)
Step 1: |
---|
This is a telescoping series. First, we find the partial sum of this series. |
Let . |
Then, . |
Step 2: |
---|
Thus, |
|
Final Answer: |
---|
(a) |
(b) |