Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The formula for the arc length <math>L</math> of a polar curve <math>r=f(\theta)</math> with <math>\alpha_1\leq \theta \leq \alpha_2</math> is  
+
|The formula for the arc length <math style="vertical-align: 0px">L</math> of a polar curve <math style="vertical-align: -5px">r=f(\theta)</math> with <math style="vertical-align: -4px">\alpha_1\leq \theta \leq \alpha_2</math> is  
 
|-
 
|-
|<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>.
+
|
 +
::<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>.
 
|-
 
|-
 
|Review trig substitution.
 
|Review trig substitution.
Line 20: Line 21:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we need to calculate <math>\frac{dr}{d\theta}</math>. Since <math>r=\theta,~\frac{dr}{d\theta}=1</math>.
+
|First, we need to calculate <math style="vertical-align: -14px">\frac{dr}{d\theta}</math>. Since <math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1</math>.
 
|-
 
|-
 
|Using the formula in Foundations, we have  
 
|Using the formula in Foundations, we have  
 
|-
 
|-
|<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta</math>.
+
|
 +
::<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta</math>.
 
|}
 
|}
  
Line 30: Line 32:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we proceed using trig substitution. Let <math>\theta=\tan x</math>. Then, <math>d\theta=\sec^2xdx</math>.
+
|Now, we proceed using trig substitution. Let <math style="vertical-align: -2px">\theta=\tan x</math>. Then, <math style="vertical-align: -1px">d\theta=\sec^2xdx</math>.
 
|-
 
|-
 
|So, the integral becomes  
 
|So, the integral becomes  
Line 47: Line 49:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Since <math>\theta=\tan x</math>, we have <math>x=\tan^{-1}\theta</math>.
+
|Since <math style="vertical-align: -1px">\theta=\tan x</math>, we have <math style="vertical-align: -1px">x=\tan^{-1}\theta</math>.
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 64: Line 66:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>L=\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math>
+
|<math>\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:36, 22 February 2016

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\theta}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq \theta \leq 2\pi}

Find the length of the curve.

Foundations:  
The formula for the arc length Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} of a polar curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_1\leq \theta \leq \alpha_2} is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta} .
Review trig substitution.

Solution:

Step 1:  
First, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dr}{d\theta}} . Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\theta,~\frac{dr}{d\theta}=1} .
Using the formula in Foundations, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta} .
Step 2:  
Now, we proceed using trig substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\theta=\sec^2xdx} .
So, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\ &&\\ & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}}\\ \end{array}}
Step 3:  
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x} , we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\tan^{-1}\theta} .
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}\\ \end{array}}
Final Answer:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}

Return to Sample Exam