Difference between revisions of "009C Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
|First, we need to find the slope of the tangent line.  
 
|First, we need to find the slope of the tangent line.  
 
|-
 
|-
|Since <math>\frac{dy}{dt}=-4\sin t</math> and <math>\frac{dx}{dt}=3\cos t</math>,
+
|Since <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> and <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t</math>, we have
 
|-
 
|-
|we have <math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}</math>.
+
|
 +
::<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}</math>.
 
|-
 
|-
 
|So, at <math>t_0=\frac{\pi}{4}</math>, the slope of the tangent line is  
 
|So, at <math>t_0=\frac{\pi}{4}</math>, the slope of the tangent line is  
 
|-
 
|-
|<math>m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}</math>.
+
|
 +
::<math>m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}</math>.
 
|}
 
|}
  
Line 45: Line 47:
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|-
 
|-
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math>x(t)</math> and <math>y(t)</math>, we get
+
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math style="vertical-align: -5px">x(t)</math> and <math style="vertical-align: -5px">y(t)</math>, we get
 
|-
 
|-
|<math>x\bigg(\frac{\pi}{4}\bigg)=3\sin\bigg(\frac{\pi}{4}\bigg)=\frac{3\sqrt{2}}{2}</math> and
+
|
 +
::<math>x\bigg(\frac{\pi}{4}\bigg)=3\sin\bigg(\frac{\pi}{4}\bigg)=\frac{3\sqrt{2}}{2}</math> and
 
|-
 
|-
|<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}</math>.
+
|
 +
::<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}</math>.
 
|-
 
|-
 
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
 
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
Line 59: Line 63:
 
|Using the point found in Step 2, the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math> is  
 
|Using the point found in Step 2, the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math> is  
 
|-
 
|-
|<math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>.
+
|
 +
::<math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>.
 
|}
 
|}
  
Line 65: Line 70:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' See '''(a)''' above for the graph.  
+
|'''(a)''' See Step 1 above for the graph.  
 
|-
 
|-
|'''(b)''' <math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
+
|'''(b)''' <math style="vertical-align: -14px">y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:29, 22 February 2016

A curve is given in polar parametrically by

a) Sketch the curve.

b) Compute the equation of the tangent line at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_0=\frac{\pi}{4}} .

Foundations:  
Review tangent lines of polar curves

Solution:

(a)

Step 1:  
Insert sketch of curve

(b)

Step 1:  
First, we need to find the slope of the tangent line.
Since and , we have
.
So, at , the slope of the tangent line is
.
Step 2:  
Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
If we plug in into the equations for and , we get
and
.
Thus, the point is on the tangent line.
Step 3:  
Using the point found in Step 2, the equation of the tangent line at is
.
Final Answer:  
(a) See Step 1 above for the graph.
(b)

Return to Sample Exam