Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we write <math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \int_0^a xe^{-x}~dx</math>.
+
|First, we write <math style="vertical-align: -14px">\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \int_0^a xe^{-x}~dx</math>.
 
|-
 
|-
|Now, we proceed using integration by parts. Let <math>u=x</math> and <math>dv=e^{-x}dx</math>. Then, <math>du=dx</math> and <math>v=-e^{-x}</math>.
+
|Now, we proceed using integration by parts. Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^{-x}dx</math>. Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=-e^{-x}</math>.
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math>
+
|
 +
::<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math>
 
|}
 
|}
  
Line 29: Line 30:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=-x</math>. Then, <math>du=-dx</math>.  
+
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=-x</math>. Then, <math style="vertical-align: 0px">du=-dx</math>.  
 
|-
 
|-
 
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|-
 
|-
|Plugging in our values into the equation <math>u=-x</math>, we get <math>u_1=0</math> and <math>u_2=-a</math>.
+
|Plugging in our values into the equation <math style="vertical-align: 0px">u=-x</math>, we get <math style="vertical-align: -5px">u_1=0</math> and <math style="vertical-align: -3px">u_2=-a</math>.
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes
Line 65: Line 66:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{}\\
+
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\
 
 
&&\\
 
&&\\
 
& = & \displaystyle{0+1}\\
 
& = & \displaystyle{0+1}\\

Revision as of 11:22, 22 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
Using L'Hopital's Rule, we get

(b)

Step 1:  
First, we write .
Now, we proceed by -substitution. We let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
.
Step 2:  
We integrate to get
Final Answer:  
(a)
(b)

Return to Sample Exam