Difference between revisions of "009B Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 17: | Line 17: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we write <math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \int_0^a xe^{-x}~dx</math>. | + | |First, we write <math style="vertical-align: -14px">\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \int_0^a xe^{-x}~dx</math>. |
|- | |- | ||
| − | |Now, we proceed using integration by parts. Let <math>u=x</math> and <math>dv=e^{-x}dx</math>. Then, <math>du=dx</math> and <math>v=-e^{-x}</math>. | + | |Now, we proceed using integration by parts. Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^{-x}dx</math>. Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=-e^{-x}</math>. |
|- | |- | ||
|Thus, the integral becomes | |Thus, the integral becomes | ||
|- | |- | ||
| − | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math> | + | | |
| + | ::<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math> | ||
|} | |} | ||
| Line 29: | Line 30: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=-x</math>. Then, <math>du=-dx</math>. | + | |For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=-x</math>. Then, <math style="vertical-align: 0px">du=-dx</math>. |
|- | |- | ||
|Since the integral is a definite integral, we need to change the bounds of integration. | |Since the integral is a definite integral, we need to change the bounds of integration. | ||
|- | |- | ||
| − | |Plugging in our values into the equation <math>u=-x</math>, we get <math>u_1=0</math> and <math>u_2=-a</math>. | + | |Plugging in our values into the equation <math style="vertical-align: 0px">u=-x</math>, we get <math style="vertical-align: -5px">u_1=0</math> and <math style="vertical-align: -3px">u_2=-a</math>. |
|- | |- | ||
|Thus, the integral becomes | |Thus, the integral becomes | ||
| Line 65: | Line 66: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
| − | \displaystyle{\int_0^{\infty} xe^{-x}~dx} | + | \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\ |
| − | |||
| − | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\ | ||
&&\\ | &&\\ | ||
& = & \displaystyle{0+1}\\ | & = & \displaystyle{0+1}\\ | ||
Revision as of 11:22, 22 February 2016
Evaluate the improper integrals:
- a)
- b)
| Foundations: |
|---|
| Review integration by parts |
Solution:
(a)
| Step 1: |
|---|
| First, we write . |
| Now, we proceed using integration by parts. Let and . Then, and . |
| Thus, the integral becomes |
|
|
| Step 2: |
|---|
| For the remaining integral, we need to use -substitution. Let . Then, . |
| Since the integral is a definite integral, we need to change the bounds of integration. |
| Plugging in our values into the equation , we get and . |
| Thus, the integral becomes |
|
|
| Step 3: |
|---|
| Now, we evaluate to get |
|
|
| Using L'Hopital's Rule, we get |
|
|
(b)
| Step 1: |
|---|
| First, we write . |
| Now, we proceed by -substitution. We let . Then, . |
| Since the integral is a definite integral, we need to change the bounds of integration. |
| Plugging in our values into the equation , we get and . |
| Thus, the integral becomes |
| . |
| Step 2: |
|---|
| We integrate to get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |