Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 67: Line 67:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{(3+h)+5-8}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{h}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}1}\\
 +
&&\\
 +
& = & \displaystyle{1}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4\sqrt{3+h+1}-8}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\
 +
&&\\
 +
& = & \displaystyle{1}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 83: Line 109:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,
 
|-
 
|-
|
+
|<math>f(x)</math> is differentiable at <math>x=3</math>.
 
|}
 
|}
  
Line 93: Line 119:
 
|'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous.
 
|'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous.
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>,
 +
|-
 +
|<math>f(x)</math> is differentiable at <math>x=3</math>.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:24, 15 February 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  

Solution:

(a)

Step 1:  
We first calculate . We have
Step 2:  
Now, we calculate . We have
Step 3:  
Now, we calculate . We have
.
Since , is continuous.

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
Step 2:  
Now, we have
Step 3:  
Since ,
is differentiable at .
Final Answer:  
(a) Since , is continuous.
(b) Since ,
is differentiable at .

Return to Sample Exam