Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 25: Line 25:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We first calculate <math>\lim_{x\rightarrow 3^+}f(x)</math>. We have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} 4\sqrt{x+1}}\\
 +
&&\\
 +
& = & \displaystyle{4\sqrt{3+1}}\\
 +
&&\\
 +
& = & \displaystyle{8}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we calculate <math>\lim_{x\rightarrow 3^-}f(x)</math>. We have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} x+5}\\
 +
&&\\
 +
& = & \displaystyle{3+5}\\
 +
&&\\
 +
& = & \displaystyle{8}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Now, we calculate <math>f(3)</math>. We have
 
|-
 
|-
|
+
|<math>f(3)=4\sqrt{3+1}=8</math>.
 
|-
 
|-
|
+
|Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous.
 
|}
 
|}
  
Line 73: Line 91:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous.
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:05, 15 February 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  

Solution:

(a)

Step 1:  
We first calculate . We have
Step 2:  
Now, we calculate . We have
Step 3:  
Now, we calculate . We have
.
Since , is continuous.

(b)

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
(a) Since , is continuous.
(b)

Return to Sample Exam