Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Review L'Hopital's Rule
 
|}
 
|}
  
Line 20: Line 20:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We begin by factoring the numerator. We have
 
|-
 
|-
|
+
|<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}</math>.
 
|-
 
|-
|
+
|So, we can cancel <math>x+3</math> in the numerator and denominator. Thus, we have
 
|-
 
|-
|
+
|<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}</math>.
 
|}
 
|}
  
Line 32: Line 32:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we can just plug in <math>x=-3</math> to get
 
|-
 
|-
|
+
|<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9</math>.
 
|-
 
|-
 
|
 
|
Line 88: Line 88:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>9</math>.
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  

Revision as of 18:16, 14 February 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Foundations:  
Review L'Hopital's Rule

Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
.
So, we can cancel in the numerator and denominator. Thus, we have
.
Step 2:  
Now, we can just plug in to get
.

(b)

Step 1:  
Step 2:  
Step 3:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam