Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Review chain rule, quotient rule, and derivatives of trig functions
 
|}
 
|}
  
Line 18: Line 18:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Using the chain rule, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{\bigg(\frac{x^2-1}{x^2+1}\bigg)}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 30: Line 31:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we need to calculate <math>\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)</math>.
 
|-
 
|-
|
+
|To do this, we use the Chain Rule. So, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{(x^2+1)(2x)-(x^2-1)(2x)}{(x^2+1)^2}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{4x}{(x^2+1)^2}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4x}{(x^2-1)(x^2+1)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4x}{x^4-1}}\\
 +
 +
\end{array}</math>
 
|}
 
|}
  
Line 66: Line 79:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>f'(x)=\frac{4x}{x^4-1}</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:35, 14 February 2016

Find the derivatives of the following functions.

a)

b)

Foundations:  
Review chain rule, quotient rule, and derivatives of trig functions

Solution:

(a)

Step 1:  
Using the chain rule, we have
Step 2:  
Now, we need to calculate .
To do this, we use the Chain Rule. So, we have

(b)

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
(a)
(b)

Return to Sample Exam