Difference between revisions of "009B Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 37: | Line 37: | ||
|Thus, the integral becomes | |Thus, the integral becomes | ||
|- | |- | ||
− | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-\int_0^{-a}e^{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 45: | Line 52: | ||
|Now, we evaluate to get | |Now, we evaluate to get | ||
|- | |- | ||
− | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)=\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1=\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1</math> | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}\\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
|Using L'Hopital's Rule, we get | |Using L'Hopital's Rule, we get | ||
|- | |- | ||
− | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1=0+1=1</math> | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{0+1}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{1}\\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
| | | | ||
Line 77: | Line 100: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | |<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_1^4 \frac{dx}{\sqrt{4-x}}} & = & \displaystyle{\lim_{a\rightarrow 4} -2u^{\frac{1}{2}}\bigg|_{3}^{4-a}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2\sqrt{3}}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 13:00, 10 February 2016
Evaluate the improper integrals:
- a)
- b)
Foundations: |
---|
Review integration by parts |
Solution:
(a)
Step 1: |
---|
First, we write . |
Now, we proceed using integration by parts. Let and . Then, and . |
Thus, the integral becomes |
Step 2: |
---|
For the remaining integral, we need to use -substitution. Let . Then, . |
Since the integral is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Thus, the integral becomes |
|
Step 3: |
---|
Now, we evaluate to get |
|
Using L'Hopital's Rule, we get |
|
(b)
Step 1: |
---|
First, we write . |
Now, we proceed by -substitution. We let . Then, . |
Since the integral is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Thus, the integral becomes |
. |
Step 2: |
---|
We integrate to get |
|
Final Answer: |
---|
(a) |
(b) |