Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
|Thus, the integral becomes
 
|Thus, the integral becomes
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^{-a}e^{u}du=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\left.e^{u}\right|_0^{-a}=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)</math>
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-\int_0^{-a}e^{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 45: Line 52:
 
|Now, we evaluate to get  
 
|Now, we evaluate to get  
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)=\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1=\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}\\
 +
\end{array}</math>
 
|-
 
|-
 
|Using L'Hopital's Rule, we get  
 
|Using L'Hopital's Rule, we get  
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1=0+1=1</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\
 +
&&\\
 +
& = & \displaystyle{0+1}\\
 +
&&\\
 +
& = & \displaystyle{1}\\
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 77: Line 100:
 
|We integrate to get  
 
|We integrate to get  
 
|-
 
|-
|<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \left.-2u^{\frac{1}{2}}\right|_{3}^{4-a}=\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}=2\sqrt{3}</math>
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_1^4 \frac{dx}{\sqrt{4-x}}} & = & \displaystyle{\lim_{a\rightarrow 4} -2u^{\frac{1}{2}}\bigg|_{3}^{4-a}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{3}}\\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 13:00, 10 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
Using L'Hopital's Rule, we get

(b)

Step 1:  
First, we write .
Now, we proceed by -substitution. We let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
.
Step 2:  
We integrate to get
Final Answer:  
(a)
(b)

Return to Sample Exam