Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We first distribute to get <math>\int e^x(x+\sin(e^x))~dx=\int e^xx~dx+\int e^x\sin(e^x)~dx</math>.
+
|We first distribute to get  
 +
|-
 +
|<math>\int e^x(x+\sin(e^x))~dx=\int e^xx~dx+\int e^x\sin(e^x)~dx</math>.
 
|-
 
|-
 
|Now, for the first integral on the right hand side of the last equation, we use integration by parts.  
 
|Now, for the first integral on the right hand side of the last equation, we use integration by parts.  
 
|-
 
|-
|Let <math>u=x</math> and <math>dv=e^xdx</math>. Then, <math>du=dx</math> and <math>v=e^x</math>. So, we have
+
|Let <math>u=x</math> and <math>dv=e^xdx</math>. Then, <math>du=dx</math> and <math>v=e^x</math>.  
 
|-
 
|-
|<math>\int e^x(x+\sin(e^x))~dx=\bigg(xe^x-\int e^x~dx \bigg)+\int e^x\sin(e^x)~dx=xe^x-e^x+\int e^x\sin(e^x)~dx</math>
+
|So, we have
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int e^x(x+\sin(e^x))~dx=} & = & \displaystyle{\bigg(xe^x-\int e^x~dx \bigg)+\int e^x\sin(e^x)~dx}\\
 +
&&\\
 +
& = & \displaystyle{xe^x-e^x+\int e^x\sin(e^x)~dx}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 41: Line 50:
 
|Now, for the one remaining integral, we use <math>u</math>-substitution.  
 
|Now, for the one remaining integral, we use <math>u</math>-substitution.  
 
|-
 
|-
|Let <math>u=e^x</math>. Then, <math>du=e^xdx</math>. So, we have
+
|Let <math>u=e^x</math>. Then, <math>du=e^xdx</math>.  
 +
|-
 +
|So, we have
 
|-
 
|-
|<math>\int e^x(x+\sin(e^x))~dx=xe^x-e^x+\int \sin(u)~du=xe^x-e^x-\cos(u)+C=xe^x-e^x-\cos(e^x)+C</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int e^x(x+\sin(e^x))~dx} & = & \displaystyle{xe^x-e^x+\int \sin(u)~du}\\
 +
&&\\
 +
& = & \displaystyle{xe^x-e^x-\cos(u)+C}\\
 +
&&\\
 +
& = & \displaystyle{xe^x-e^x-\cos(e^x)+C}\\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 12:40, 10 February 2016

Compute the following integrals.

a)

b)

c)


Foundations:  
Review -substitution
Integration by parts
Partial fraction decomposition
Trig identities

Solution:

(a)

Step 1:  
We first distribute to get
.
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract from the numerator. So, we have
.
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since , we let .
Multiplying both sides of the last equation by , we get .
If we let , the last equation becomes .
If we let , then we get . Thus, .
So, in summation, we have .
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have
.
Step 4:  
For the final remaining integral, we use -substitution.
Let . Then, and .
Thus, our final integral becomes
.
Therefore, the final answer is

(c)

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we proceed by -substitution. Let . Then, . So we have
.
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam