Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 55: | Line 55: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>. |
+ | |- | ||
+ | |So, first we need to find <math>\frac{dy'}{d\theta}</math>. | ||
+ | |- | ||
+ | |We have | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |since <math>\sin^2\theta+\cos^2\theta=1</math> and <math>2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>. | ||
|} | |} | ||
Line 63: | Line 78: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | | Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get |
|- | |- | ||
− | | | + | |<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>. |
|- | |- | ||
| | | | ||
Line 75: | Line 90: | ||
|'''(a)''' See '''(a)''' above for the graph. | |'''(a)''' See '''(a)''' above for the graph. | ||
|- | |- | ||
− | |'''(b)''' <math> | + | |'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> |
|- | |- | ||
− | |'''(c)''' | + | |'''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:32, 9 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Compute .
c) Compute .
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
First, recall we have |
. |
Since , . |
Hence, |
Step 2: |
---|
Thus, we have
|
(c)
Step 1: |
---|
We have . |
So, first we need to find . |
We have |
|
since and . |
Step 2: |
---|
Now, using the resulting formula for , we get |
. |
Final Answer: |
---|
(a) See (a) above for the graph. |
(b) |
(c) |