Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 55: | Line 55: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>. |
| + | |- | ||
| + | |So, first we need to find <math>\frac{dy'}{d\theta}</math>. | ||
| + | |- | ||
| + | |We have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |since <math>\sin^2\theta+\cos^2\theta=1</math> and <math>2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>. | ||
|} | |} | ||
| Line 63: | Line 78: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | | Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get |
|- | |- | ||
| − | | | + | |<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>. |
|- | |- | ||
| | | | ||
| Line 75: | Line 90: | ||
|'''(a)''' See '''(a)''' above for the graph. | |'''(a)''' See '''(a)''' above for the graph. | ||
|- | |- | ||
| − | |'''(b)''' <math> | + | |'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> |
|- | |- | ||
| − | |'''(c)''' | + | |'''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 12:32, 9 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Compute .
c) Compute .
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| Insert sketch of graph |
(b)
| Step 1: |
|---|
| First, recall we have |
| . |
| Since , . |
| Hence, |
| Step 2: |
|---|
| Thus, we have
|
(c)
| Step 1: |
|---|
| We have . |
| So, first we need to find . |
| We have |
|
|
| since and . |
| Step 2: |
|---|
| Now, using the resulting formula for , we get |
| . |
| Final Answer: |
|---|
| (a) See (a) above for the graph. |
| (b) |
| (c) |