Difference between revisions of "009C Sample Final 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 6: | Line 6: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |Review Ratio Test |
|} | |} | ||
Line 14: | Line 14: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We proceed using the ratio test. |
+ | |- | ||
+ | |We have | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n!}{n!}\frac{n^n}{(n+1)^{n+1}}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n^n}{(n+1)(n+1)^n}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\ | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we continue to calculate the limit from Step 1. We have |
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty}e^{\ln(\frac{n}{n+1})^n}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 3: |
+ | |- | ||
+ | |Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)</math>. | ||
|- | |- | ||
− | | | + | |First, we write the limit as <math>\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}</math>. |
|- | |- | ||
− | | | + | |Now, we use L'Hopital's Rule to get |
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & = & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n(n+1)}(-n^2)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-1}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 4: | ||
+ | |- | ||
+ | |We go back to Step 2 and use the limit we calculated in Step 3. | ||
+ | |- | ||
+ | |So, we have | ||
+ | |- | ||
+ | |<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1</math>. | ||
+ | |- | ||
+ | |Thus, the series absolutely converges by the Ratio Test. | ||
+ | |- | ||
+ | |Since the series absolutely converges, the series also converges. | ||
+ | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | |The series converges. |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:55, 9 February 2016
Determine whether the following series converges or diverges.
Foundations: |
---|
Review Ratio Test |
Solution:
Step 1: |
---|
We proceed using the ratio test. |
We have |
|
Step 2: |
---|
Now, we continue to calculate the limit from Step 1. We have |
|
Step 3: |
---|
Now, we need to calculate . |
First, we write the limit as . |
Now, we use L'Hopital's Rule to get |
|
Step 4: |
---|
We go back to Step 2 and use the limit we calculated in Step 3. |
So, we have |
. |
Thus, the series absolutely converges by the Ratio Test. |
Since the series absolutely converges, the series also converges. |
Final Answer: |
---|
The series converges. |