Difference between revisions of "009C Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 41: | Line 41: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |This is a telescoping series. First, we find the partial sum of this series. |
|- | |- | ||
− | | | + | |Let <math>s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>. |
|- | |- | ||
− | | | + | |Then, <math>s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>. |
|} | |} | ||
Line 51: | Line 51: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Thus, <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math> |
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 67: | Line 60: | ||
|'''(a)''' <math>\frac{e}{e+2}</math> | |'''(a)''' <math>\frac{e}{e+2}</math> | ||
|- | |- | ||
− | |'''(b)''' | + | |'''(b)''' <math>\frac{1}{2}</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 19:44, 8 February 2016
Find the sum of the following series:
a)
b)
Foundations: |
---|
Review geometric series. |
Solution:
(a)
Step 1: |
---|
First, we write |
|
Step 2: |
---|
Since , . So, |
. |
(b)
Step 1: |
---|
This is a telescoping series. First, we find the partial sum of this series. |
Let . |
Then, . |
Step 2: |
---|
Thus, |
Final Answer: |
---|
(a) |
(b) |