Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Area under a polar curve
 
|}
 
|}
  
Line 21: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Insert sketch
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2:  
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
 
'''(b)'''
 
'''(b)'''
Line 45: Line 30:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Since the graph has symmetry (as seen in the graph), the area of the curve is
 
|-
 
|-
|
+
|<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta</math>
 
|-
 
|-
 
|
 
|
Line 54: Line 39:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Using the double angle formula for <math>\sin(2\theta)</math>, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\
 +
&&\\
 +
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}}\\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 17:09, 8 February 2016

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq \theta \leq 2\pi}

a) Sketch the curve.

b) Find the area enclosed by the curve.


Foundations:  
Area under a polar curve

Solution:

(a)

Step 1:  
Insert sketch


(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is
Step 2:  
Using the double angle formula for , we have
Step 3:  
Final Answer:  
(a)
(b)

Return to Sample Exam